Evgeniy G Evtushenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7786161/publications.pdf

Version: 2024-02-01

623188 552369 1,337 29 14 26 g-index citations h-index papers 30 30 30 2850 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Sensitive Nanomagnetic Quantification of Extracellular Vesicles by Immunochromatographic Strips: A Tool for Liquid Biopsy. Nanomaterials, 2022, 12, 1579.	1.9	14
2	Stomatin is highly expressed in exosomes of different origin and is a promising candidate as an exosomal marker. Journal of Cellular Biochemistry, 2021, 122, 100-115.	1.2	16
3	Tropism of Extracellular Vesicles and Cell-Derived Nanovesicles to Normal and Cancer Cells: New Perspectives in Tumor-Targeted Nucleic Acid Delivery. Pharmaceutics, 2021, 13, 1911.	2.0	7
4	Analysis of MicroRNA Profile Alterations in Extracellular Vesicles From Mesenchymal Stromal Cells Overexpressing Stem Cell Factor. Frontiers in Cell and Developmental Biology, 2021, 9, 754025.	1.8	4
5	Secretome of Mesenchymal Stromal Cells Prevents Myofibroblasts Differentiation by Transferring Fibrosis-Associated microRNAs within Extracellular Vesicles. Cells, 2020, 9, 1272.	1.8	44
6	Adsorption of extracellular vesicles onto the tube walls during storage in solution. PLoS ONE, 2020, 15, e0243738.	1.1	40
7	Electrostatic complexes between thermosensitive cationic microgels and anionic liposomes: Formation and triggered release of encapsulated enzyme. European Polymer Journal, 2019, 119, 222-228.	2.6	5
8	Effect of MSCs and MSC-Derived Extracellular Vesicles on Human Blood Coagulation. Cells, 2019, 8, 258.	1.8	91
9	On the mechanism of payload release from liposomes bound to temperature-sensitive microgel particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 396-402.	2.3	10
10	Application of Adeno-Associated Virus Vectors for Engineering SCF-Containing Extracellular Vesicles of Mesenchymal Stromal Cells. Bulletin of Experimental Biology and Medicine, 2019, 166, 527-534.	0.3	3
11	Influence of stabilizing components on the integrity of antitumor liposomes loaded with lipophilic prodrug in the bilayer. Colloids and Surfaces B: Biointerfaces, 2018, 166, 45-53.	2.5	27
12	Controlling the nearâ€infrared transparency of costal cartilage by impregnation with clearing agents and magnetite nanoparticles. Journal of Biophotonics, 2018, 11, e201700105.	1.1	11
13	Giant electromagnetic field in periodic metal-silicone metasurface and SERS sensors. , 2018, , .		O
14	Tunable metasurface composed of periodic metal-dielectric resonators. , 2018, , .		0
15	Control of optical transparency and infrared laser heating of costal cartilage via injection of iohexol. Journal of Biophotonics, 2018, 11, e201800195.	1.1	11
16	Exosome-Mediated Transfer of Cancer Cell Resistance to Antiestrogen Drugs. Molecules, 2018, 23, 829.	1.7	49
17	Biodegradable Electrostatic Complexes of Chitosan Cationic Microparticles and Anionic Liposomes. Polymer Science - Series B, 2018, 60, 84-90.	0.3	9
18	Apoptotic Cell-Derived Extracellular Vesicles Promote Malignancy of Glioblastoma Via Intercellular Transfer of Splicing Factors. Cancer Cell, 2018, 34, 119-135.e10.	7.7	222

#	Article	IF	CITATIONS
19	Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Scientific Reports, 2015, 5, 17319.	1.6	430
20	UK–Russia Researcher Links Workshop: extracellular vesicles – mechanisms of biogenesis and roles in disease pathogenesis, M.V. Lomonosov Moscow State University, Moscow, Russia, 1–5ÂMarch 2015. Journal of Extracellular Vesicles, 2015, 4, 28094.	5.5	1
21	Comparative Study of Non-Enveloped Icosahedral Viruses Size. PLoS ONE, 2015, 10, e0142415.	1.1	33
22	Signal enhancement from fluorescently labeled exosomes: Theoretical analysis of fluorescence in the presence of plasmonic nanoparticles. Moscow University Chemistry Bulletin, 2015, 70, 108-116.	0.2	0
23	Engineering Systems with Spatially Separated Enzymes via Dual-Stimuli-Sensitive Properties of Microgels. Langmuir, 2015, 31, 13029-13039.	1.6	39
24	New type of organic/gold nanohybrid material: Preparation, properties and application in catalysis. Applied Surface Science, 2015, 325, 73-78.	3.1	9
25	Proteome–Metabolome Profiling of Ovarian Cancer Ascites Reveals Novel Components Involved in Intercellular Communication. Molecular and Cellular Proteomics, 2014, 13, 3558-3571.	2.5	100
26	Manganese Dioxide Nanostructures as a Novel Electrochemical Mediator for Thiol Sensors. Electroanalysis, 2012, 24, 573-580.	1.5	62
27	Biosensing Systems Based on Metal Oxides Nanoparticles and Choline Oxidase for Environmental and Biomedical Monitoring of Neurotoxicants. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 151-169.	0.5	0
28	Improved adsorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodide anions. Soft Matter, 2011, 7, 7404.	1.2	21
29	Synthesis of Conducting Polyelectrolyte Complexes of Polyaniline and Poly(2-acrylamido-3-methyl-1-propanesulfonic acid) Catalyzed by pH-Stable Palm Tree Peroxidase. Biomacromolecules, 2005, 6, 1360-1366.	2.6	57