Igor A Chernyavskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7786114/publications.pdf

Version: 2024-02-01

759233 794594 38 702 12 19 citations h-index g-index papers 38 38 38 339 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Self-Excitation Thresholds in RF Structures. IEEE Transactions on Electron Devices, 2022, 69, 2611-2617.	3.0	3
2	Adjoint Equations for Beam-Wave Interaction and Optimization of TWT Design. IEEE Transactions on Plasma Science, 2022, 50, 2568-2577.	1.3	4
3	Demonstration of a <i>W</i> -Band Traveling-Wave Tube Power Amplifier With 10-GHz Bandwidth. IEEE Transactions on Electron Devices, 2021, 68, 2492-2498.	3.0	17
4	Validation of the Tesla-Z Stability Analysis Framework by its Application to Experimental TWTS*. , 2021, , .		0
5	End-to-End Simulation of a Folded Waveguide Traveling Wave Tube Using Impedance Matrices and Compass. , 2021, , .		2
6	Adjoint Approach to Analysis of External Circuit Effects in Vacuum Electronic Devices*., 2021,,.		0
7	Adjoint Approach to Optimization and Sensitivity Analysis of External Circuit Effects in Vacuum Electronic Devices. , 2021, , .		1
8	Validation of the Stability Analysis Framework Based on the Large-signal Code TESLA-Z by Its Application to the Experimental TWTs. , $2021, \dots$		1
9	From 2D to 1.5D: Reduced Order Simulations with the Large-Signal Code TESLA. , 2021, , .		3
10	Numerical Determination of Vacuum Electronic Device Stability. IEEE Transactions on Plasma Science, 2020, 48, 4171-4180.	1.3	6
11	Modeling Stability of Vacuum Electronic Devices With the Large-Signal Code TESLA-Z. , 2020, , .		O
12	Adjoint Approach to Optimization and Sensitivity Analysis of Beam Wave Interaction in Vacuum Electronic Devices. , 2020, , .		2
13	Demonstration of a W-band TWT with 10 GHz Bandwidth. , 2020, , .		2
14	Stability Analysis of VE Amplifiers Based on Determinant Equations. , 2020, , .		1
15	Adjoint Approach to Optimization of Beam Wave Interaction. , 2020, , .		O
16	Calculation and Application of Impedance Matrices for Vacuum Electronic Devices. IEEE Transactions on Electron Devices, 2019, 66, 2409-2414.	3.0	6
17	Efficient Calculation of Impedance Matrices for Vacuum Electronic Device Circuit Structures. IEEE Transactions on Electron Devices, 2018, 65, 2264-2271.	3.0	4
18	Quasi-3-D Modeling of Higher Order Mode Instability in a Two-Gap Input Cavity of Broadband MBK. IEEE Transactions on Electron Devices, 2018, 65, 2114-2121.	3.0	3

#	Article	IF	Citations
19	Design of a low voltage folded waveguide four beam Mini-TWT. , 2018, , .		8
20	Advanced large-signal modeling of Multiple-beam Klystrons using generalized impedance matrix approach. , $2018, \ldots$		5
21	Design and Recent Status of the NRL Low Voltage Folded Waveguide Four Beam Mini-TWT., 2018,,.		O
22	Modeling Vacuum Electronic Devices Using Generalized Impedance Matrices. IEEE Transactions on Electron Devices, 2017, 64, 536-542.	3.0	34
23	Compact, efficient, high-power millimeter-wave power boosters. , 2017, , .		0
24	Modeling oscillations in TWTs using the TESLA family of codes. , 2017, , .		1
25	Modeling Oscillations in TWTs by Using the Tesla-Family of 2D Large-Signal Codes. , 2017, , .		0
26	Large-Signal 2-D Modeling of Folded-Waveguide Traveling Wave Tubes. IEEE Transactions on Electron Devices, 2016, 63, 2531-2537.	3.0	19
27	1-D Large Signal Model of Folded-Waveguide Traveling Wave Tubes. IEEE Transactions on Electron Devices, 2014, 61, 1699-1706.	3.0	29
28	Design Methodology and Experimental Verification of Serpentine/Folded-Waveguide TWTs. IEEE Transactions on Electron Devices, 2014, 61, 1679-1686.	3.0	105
29	Demonstration of a High Power, Wideband 220-GHz Traveling Wave Amplifier Fabricated by UV-LIGA. IEEE Transactions on Electron Devices, 2014, 61, 1672-1678.	3.0	168
30	Transmission Line Model for Folded Waveguide Circuits. IEEE Transactions on Electron Devices, 2013, 60, 2906-2911.	3.0	30
31	Development of high-power broadband Ka-band cascaded-TWT. , 2013, , .		10
32	Demonstration of a high power, wideband 220 GHz serpentine waveguide amplifier fabricated by UV-LIGA. , 2013, , .		24
33	A Computationally Efficient Two-Dimensional Model of the Beam–Wave Interaction in a Coupled-Cavity TWT. IEEE Transactions on Plasma Science, 2012, 40, 1575-1589.	1.3	40
34	Large-Signal Multifrequency Simulation of Coupled-Cavity TWTs. IEEE Transactions on Electron Devices, 2011, 58, 1229-1240.	3.0	39
35	Detailed Analysis of the Interception Current Predicted by the Large-Signal Code TESLA for an Experimental Multiple-Beam Klystron. IEEE Transactions on Electron Devices, 2009, 56, 877-882.	3.0	5
36	Experimental Study and Analysis of an S-Band Multiple-Beam Klystron With 6% Bandwidth. IEEE Transactions on Electron Devices, 2009, 56, 846-854.	3.0	70

#	Article	IF	CITATIONS
37	Parallel Simulation of Independent Beam-Tunnels in Multiple-Beam Klystrons Using TESLA. IEEE Transactions on Plasma Science, 2008, 36, 670-681.	1.3	30
38	Simulation of Klystrons With Slow and Reflected Electrons Using Large-Signal Code TESLA. IEEE Transactions on Electron Devices, 2007, 54, 1555-1561.	3.0	30