Carla Caddeo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7786098/publications.pdf

Version: 2024-02-01

66 papers

3,125 citations

33 h-index 55 g-index

66 all docs 66
docs citations

66 times ranked 3872 citing authors

#	Article	IF	CITATIONS
1	Ex vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle–skin interaction. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 27-35.	4.3	128
2	Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. International Journal of Pharmaceutics, 2018, 538, 40-47.	5.2	122
3	Nanocarriers for antioxidant resveratrol: Formulation approach, vesicle self-assembly and stability evaluation. Colloids and Surfaces B: Biointerfaces, 2013, 111, 327-332.	5.0	121
4	Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomaterialia, 2014, 10, 1292-1300.	8.3	119
5	Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. International Journal of Pharmaceutics, 2016, 513, 153-163.	5.2	115
6	Penetration enhancer containing vesicles as carriers for dermal delivery of tretinoin. International Journal of Pharmaceutics, 2011, 412, 37-46.	5.2	108
7	Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. Journal of Colloid and Interface Science, 2016, 461, 69-78.	9.4	108
8	Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles. Colloids and Surfaces B: Biointerfaces, 2014, 123, 566-574.	5.0	94
9	Improvements of cellular stress response on resveratrol in liposomes. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 253-259.	4.3	92
10	Antioxidant activity of quercetin in Eudragit-coated liposomes for intestinal delivery. International Journal of Pharmaceutics, 2019, 565, 64-69.	5.2	84
11	Delivery of liquorice extract by liposomes and hyalurosomes to protect the skin against oxidative stress injuries. Carbohydrate Polymers, 2015, 134, 657-663.	10.2	83
12	Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol. Carbohydrate Polymers, 2017, 157, 1853-1861.	10.2	83
13	Effect of Penetration Enhancer Containing Vesicles on the Percutaneous Delivery of Quercetin through New Born Pig Skin. Pharmaceutics, 2011, 3, 497-509.	4.5	82
14	Topical Anti-Inflammatory Potential of Quercetin in Lipid-Based Nanosystems: In Vivo and In Vitro Evaluation. Pharmaceutical Research, 2014, 31, 959-968.	3.5	78
15	Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats. Acta Biomaterialia, 2015, 13, 216-227.	8.3	74
16	Chitosanâ€"xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin. Journal of Microencapsulation, 2014, 31, 694-699.	2.8	73
17	Nanodesign of olein vesicles for the topical delivery of the antioxidant resveratrol. Journal of Pharmacy and Pharmacology, 2013, 65, 1158-1167.	2.4	71
18	Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids and Surfaces B: Biointerfaces, 2018, 171, 115-122.	5.0	67

#	Article	IF	Citations
19	Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: <i>in vitro</i> and <i>in vivo</i> evaluation. Journal of Liposome Research, 2009, 19, 68-76.	3.3	65
20	Identification and nanoentrapment of polyphenolic phytocomplex from Fraxinus angustifolia: InÂvitro and inÂvivo wound healing potential. European Journal of Medicinal Chemistry, 2015, 89, 179-188.	5 . 5	65
21	Preparation of gellan-cholesterol nanohydrogels embedding baicalin and evaluation of their wound healing activity. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 244-249.	4.3	63
22	Inhibition of skin inflammation in mice by diclofenac in vesicular carriers: Liposomes, ethosomes and PEVs. International Journal of Pharmaceutics, 2013, 443, 128-136.	5.2	61
23	Freeze-dried eudragit-hyaluronan multicompartment liposomes to improve the intestinal bioavailability of curcumin. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 49-55.	4.3	56
24	In Vitro Release of Lysozyme from Gelatin Microspheres: Effect of Cross-linking Agents and Thermoreversible Gel as Suspending Medium. Biomacromolecules, 2011, 12, 3186-3193.	5 . 4	53
25	Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 278-287.	4.3	51
26	Diclofenac acid nanocrystals as an effective strategy to reduce in vivo skin inflammation by improving dermal drug bioavailability. Colloids and Surfaces B: Biointerfaces, 2016, 143, 64-70.	5.0	50
27	Inhibition of skin inflammation by baicalin ultradeformable vesicles. International Journal of Pharmaceutics, 2016, 511, 23-29.	5. 2	49
28	What's new in the field of phospholipid vesicular nanocarriers for skin drug delivery. International Journal of Pharmaceutics, 2020, 583, 119398.	5. 2	48
29	Recent Advances in Research on Polyphenols: Effects on Microbiota, Metabolism, and Health. Molecular Nutrition and Food Research, 2022, 66, e2100670.	3.3	48
30	Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 569-579.	3.3	46
31	Antimalarial Activity of Orally Administered Curcumin Incorporated in Eudragit®-Containing Liposomes. International Journal of Molecular Sciences, 2018, 19, 1361.	4.1	44
32	Polymer-associated liposomes for the oral delivery of grape pomace extract. Colloids and Surfaces B: Biointerfaces, 2016, 146, 910-917.	5.0	43
33	Innovative strategies to treat skin wounds with mangiferin: fabrication of transfersomes modified with glycols and mucin. Nanomedicine, 2020, 15, 1671-1685.	3.3	37
34	Faceted phospholipid vesicles tailored for the delivery of Santolina insularis essential oil to the skin. Colloids and Surfaces B: Biointerfaces, 2015, 132, 185-193.	5.0	35
35	Antimicrobial Effect of Thymus capitatus and Citrus limon var. pompia as Raw Extracts and Nanovesicles. Pharmaceutics, 2019, 11, 234.	4.5	34
36	Chemical characterization of Citrus limon var. pompia and incorporation in phospholipid vesicles for skin delivery. International Journal of Pharmaceutics, 2016, 506, 449-457.	5 . 2	32

#	Article	IF	CITATIONS
37	Nutriosomes: prebiotic delivery systems combining phospholipids, a soluble dextrin and curcumin to counteract intestinal oxidative stress and inflammation. Nanoscale, 2018, 10, 1957-1969.	5.6	32
38	Protective effect of grape extract phospholipid vesicles against oxidative stress skin damages. Industrial Crops and Products, 2016, 83, 561-567.	5.2	31
39	Nanoformulation of curcumin-loaded eudragit-nutriosomes to counteract malaria infection by a dual strategy: Improving antioxidant intestinal activity and systemic efficacy. International Journal of Pharmaceutics, 2019, 556, 82-88.	5.2	30
40	Ferulic Acid-NLC with Lavandula Essential Oil: A Possible Strategy for Wound-Healing?. Nanomaterials, 2020, 10, 898.	4.1	30
41	Nanoincorporation of bioactive compounds from red grape pomaces: In vitro and ex vivo evaluation of antioxidant activity. International Journal of Pharmaceutics, 2017, 523, 159-166.	5.2	28
42	Photostability and solubility improvement of \hat{l}^2 -cyclodextrin-included tretinoin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 59, 293-300.	1.6	27
43	Phytocomplexes extracted from grape seeds and stalks delivered in phospholipid vesicles tailored for the treatment of skin damages. Industrial Crops and Products, 2019, 128, 471-478.	5.2	27
44	Archaeosomes as carriers for topical delivery of betamethasone dipropionate: <i>in vitro</i> skin permeation study. Journal of Liposome Research, 2010, 20, 269-276.	3.3	26
45	Investigating the interactions of resveratrol with phospholipid vesicle bilayer and the skin: NMR studies and confocal imaging. International Journal of Pharmaceutics, 2015, 484, 138-145.	5.2	22
46	Santosomes as natural and efficient carriers for the improvement of phycocyanin reepithelising ability in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 103, 149-158.	4.3	20
47	Sorbitol-penetration enhancer containing vesicles loaded with baicalin for the protection and regeneration of skin injured by oxidative stress and UV radiation. International Journal of Pharmaceutics, 2019, 555, 175-183.	5.2	20
48	Comparison between Citral and Pompia Essential Oil Loaded in Phospholipid Vesicles for the Treatment of Skin and Mucosal Infections. Nanomaterials, 2020, 10, 286.	4.1	20
49	Resveratrol and artemisinin eudragit-coated liposomes: A strategy to tackle intestinal tumors. International Journal of Pharmaceutics, 2021, 592, 120083.	5.2	20
50	Extraction, Purification and Nanoformulation of Natural Phycocyanin (from <l>Klamath</l>) Tj ETQq0 (Nanotechnology, 2013, 9, 1929-1938.	0 0 rgBT /0 1.1	Overlock 10 Tf 19
51	Eco-scalable baicalin loaded vesicles developed by combining phospholipid with ethanol, glycerol, and propylene glycol to enhance skin permeation and protection. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110504.	5.0	19
52	Citrus limon Extract Loaded in Vesicular Systems for the Protection of Oral Cavity. Medicines (Basel,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
53	Co-loading of finasteride and baicalin in phospholipid vesicles tailored for the treatment of hair disorders. Nanoscale, 2020, 12, 16143-16152.	5.6	17
54	Functional response of novel bioprotective poloxamer-structured vesicles on inflamed skin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1127-1136.	3.3	16

#	Article	lF	CITATIONS
55	Baicalin and berberine ultradeformable vesicles as potential adjuvant in vitiligo therapy. Colloids and Surfaces B: Biointerfaces, 2019, 175, 654-662.	5.0	16
56	Co-Loading of Ascorbic Acid and Tocopherol in Eudragit-Nutriosomes to Counteract Intestinal Oxidative Stress. Pharmaceutics, $2019,11,13.$	4.5	15
57	Oral delivery of natural compounds by phospholipid vesicles. Nanomedicine, 2020, 15, 1795-1803.	3.3	14
58	Advanced strategy to exploit wine-making waste by manufacturing antioxidant and prebiotic fibre-enriched vesicles for intestinal health. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111146.	5.0	14
59	1H NMR study of the interaction of trans-resveratrol with soybean phosphatidylcholine liposomes. Scientific Reports, 2019, 9, 17736.	3.3	13
60	Penetration Enhancer-Containing Vesicles: Does the Penetration Enhancer Structure Affect Topical Drug Delivery?. Current Drug Targets, 2015, 16, 1438-1447.	2.1	12
61	Incorporation of Lippia citriodora Microwave Extract into Total-Green Biogelatin-Phospholipid Vesicles to Improve Its Antioxidant Activity. Nanomaterials, 2020, 10, 765.	4.1	9
62	Development of advanced phospholipid vesicles loaded with Lippia citriodora pressurized liquid extract for the treatment of gastrointestinal disorders. Food Chemistry, 2021, 337, 127746.	8.2	8
63	Efficacy of a resveratrol nanoformulation based on a commercially available liposomal platform. International Journal of Pharmaceutics, 2021, 608, 121086.	5.2	8
64	Tempranillo Grape Extract in Transfersomes: A Nanoproduct with Antioxidant Activity. Nanomaterials, 2022, 12, 746.	4.1	5
65	Exploring the co-loading of lidocaine chemical forms in surfactant/phospholipid vesicles for improved skin delivery. Journal of Pharmacy and Pharmacology, 2015, 67, 909-917.	2.4	4
66	Exploiting the Anti-Inflammatory Potential of White Capsicum Extract by the Nanoformulation in Phospholipid Vesicles. Antioxidants, 2021, 10, 1683.	5.1	3