Dimitrios Loukrezis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7785979/publications.pdf

Version: 2024-02-01

		1307594	1281871	
18	144	7	11	
papers	citations	h-index	g-index	
10	1.0	1.0	0.4	
18	18	18	94	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Three-dimensional data-driven magnetostatic field computation using real-world measurement data. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2022, 41, 615-627.	0.9	3
2	Hybrid modeling: towards the next level of scientific computing in engineering. Journal of Mathematics in Industry, 2022, 12, .	1.2	12
3	A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems. Journal of Computational Physics, 2022, 464, 111313.	3.8	12
4	Dataâ€driven solvers for strongly nonlinear material response. International Journal for Numerical Methods in Engineering, 2021, 122, 1538-1562.	2.8	16
5	Tensor-train approximation of the chemical master equation and its application for parameter inference. Journal of Chemical Physics, 2021, 155, 034102.	3.0	9
6	Local field reconstruction from rotating coil measurements in particle accelerator magnets. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1011, 165580.	1.6	3
7	Data-driven electromagnetic field simulation with a material-model-free finite element solver. , 2021, , .		O
8	Magnetic Field Simulation With Data-Driven Material Modeling. IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	14
9	ENHANCED ADAPTIVE SURROGATE MODELS WITH APPLICATIONS IN UNCERTAINTY QUANTIFICATION FOR NANOPLASMONICS., 2020, 10, 165-193.		5
10	Approximation and Uncertainty Quantification of Systems with Arbitrary Parameter Distributions Using Weighted Leja Interpolation. Algorithms, 2020, 13, 51.	2.1	3
11	Robust adaptive least squares polynomial chaos expansions in highâ€frequency applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2020, 33, e2725.	1.9	10
12	Influence of spatial dispersion on surface plasmons, nanoparticles, and grating couplers. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2989.	2.1	10
13	Optimization and uncertainty quantification of gradient index metasurfaces [Invited]. Optical Materials Express, 2019, 9, 892.	3.0	14
14	ASSESSING THE PERFORMANCE OF LEJA AND CLENSHAW-CURTIS COLLOCATION FOR COMPUTATIONAL ELECTROMAGNETICS WITH RANDOM INPUT DATA. , 2019, 9, 33-57.		14
15	Highâ€dimensional uncertainty quantification for an electrothermal field problem using stochastic collocation on sparse grids and tensor train decompositions. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2018, 31, e2222.	1.9	3
16	Robust shape optimization of electric devices based on deterministic optimization methods and finite-element analysis with affine parametrization and design elements. Electrical Engineering, 2018, 100, 2635-2647.	2.0	10
17	A Survey of Unsupervised Learning Methods for High-Dimensional Uncertainty Quantification in Black-Box-Type Problems. SSRN Electronic Journal, 0, , .	0.4	2
18	Grassmannian diffusion maps based surrogate modeling via geometric harmonics. International Journal for Numerical Methods in Engineering, 0, , .	2.8	4