Sara I Fabrikant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7785868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Space, time and visual analytics. International Journal of Geographical Information Science, 2010, 24, 1577-1600.	2.2	342
2	Evaluating the Effectiveness of Interactive Map Interface Designs: A Case Study Integrating Usability Metrics with Eye-Movement Analysis. Cartography and Geographic Information Science, 2009, 36, 5-17.	1.4	159
3	Spatialization Methods: A Cartographic Research Agenda for Non-geographic Information Visualization. Cartography and Geographic Information Science, 2003, 30, 99-119.	1.4	147
4	Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task Journal of Experimental Psychology: Learning Memory and Cognition, 2010, 36, 37-53.	0.7	144
5	Exploring the efficiency of users' visual analytics strategies based on sequence analysis of eye movement recordings. International Journal of Geographical Information Science, 2010, 24, 1559-1575.	2.2	136
6	Geovisualization of Dynamics, Movement and Change: Key Issues and Developing Approaches in Visualization Research. Information Visualization, 2008, 7, 173-180.	1.2	123
7	Cognitively Inspired and Perceptually Salient Graphic Displays for Efficient Spatial Inference Making. Annals of the American Association of Geographers, 2010, 100, 13-29.	3.0	101
8	Evaluating the Effectiveness and Efficiency of Visual Variables for Geographic Information Visualization. Lecture Notes in Computer Science, 2009, , 195-211.	1.0	99
9	Formalizing Semantic Spaces For Information Access. Annals of the American Association of Geographers, 2001, 91, 263-280.	3.0	95
10	Novel Method to Measure Inference Affordance in Static Small-Multiple Map Displays Representing Dynamic Processes. Cartographic Journal, 2008, 45, 201-215.	0.8	92
11	Swiss Canine Cancer Registry 1955–2008: Occurrence of the Most Common Tumour Diagnoses and Influence of Age, Breed, Body Size, Sex and Neutering Status on Tumour Development. Journal of Comparative Pathology, 2016, 155, 156-170.	0.1	88
12	The Swiss Canine Cancer Registry: A Retrospective Study on the Occurrence of Tumours in Dogs in Switzerland from 1955 to 2008. Journal of Comparative Pathology, 2015, 152, 161-171.	0.1	68
13	Digital health and the COVID-19 epidemic: an assessment framework for apps from an epidemiological and legal perspective. Swiss Medical Weekly, 2020, 150, w20282.	0.8	63
14	Introduction: Cognitive Issues in Geographic Information Visualization. Cartographica, 2009, 44, 139-143.	0.2	59
15	Bundled Visualization of DynamicGraph and Trail Data. IEEE Transactions on Visualization and Computer Graphics, 2014, 20, 1141-1157.	2.9	57
16	Swiss Feline Cancer Registry: A Retrospective Study of the Occurrence of Tumours in Cats in Switzerland from 1965 to 2008. Journal of Comparative Pathology, 2015, 153, 266-277.	0.1	57
17	How does navigation system behavior influence human behavior?. Cognitive Research: Principles and Implications, 2019, 4, 5.	1.1	49
18	Spatialized Browsing in Large Data Archives. Transactions in GIS, 2000, 4, 65-78.	1.0	48

#	Article	IF	CITATIONS
19	The Distance–Similarity Metaphor in Network-Display Spatializations. Cartography and Geographic Information Science, 2004, 31, 237-252.	1.4	47
20	Designing across map use contexts: a research agenda. International Journal of Cartography, 2017, 3, 90-114.	0.2	47
21	Virtual environments as memory training devices in navigational tasks for older adults. Scientific Reports, 2018, 8, 10809.	1.6	41
22	Testing the First Law of Cognitive Geography on Point-Display Spatializations. Lecture Notes in Computer Science, 2003, , 316-331.	1.0	39
23	Cognitively Plausible Information Visualization. , 2005, , 667-690.		36
24	How Do People View Multi-Component Animated Maps?. Cartographic Journal, 2014, 51, 330-342.	0.8	35
25	Not all anxious individuals get lost: Trait anxiety and mental rotation ability interact to explain performance in map-based route learning in men. Neurobiology of Learning and Memory, 2016, 132, 1-8.	1.0	34
26	Swiss Feline Cancer Registry 1965–2008: the Influence of Sex, Breed and Age on Tumour Types and Tumour Locations. Journal of Comparative Pathology, 2016, 154, 195-210.	0.1	33
27	More Maps, More Users, More Devices Means More Cartographic Challenges. Cartographic Journal, 2012, 49, 298-301.	0.8	32
28	The distance-similarity metaphor in region-display spatializations. IEEE Computer Graphics and Applications, 2006, 26, 34-44.	1.0	30
29	How users interact with a 3D geo-browser under time pressure. Cartography and Geographic Information Science, 2013, 40, 40-52.	1.4	30
30	Combining user logging with eyeÂtracking for interactive and dynamic applications. Behavior Research Methods, 2015, 47, 977-993.	2.3	30
31	How Do Map Readers Recognize a Topographic Mapping Style?. Cartographic Journal, 2015, 52, 193-203.	0.8	28
32	Making Useful and Useable Geovisualization. , 2005, , 551-566.		25
33	Spatialization of user-generated content to uncover the multirelational world city network. Environment and Planning B: Planning and Design, 2016, 43, 228-248.	1.7	25
34	Of maps, cartography and the geography of the International Cartographic Association. International Journal of Cartography, 2017, 3, 9-31.	0.2	25
35	How Do Display Design and User Characteristics Matter in Animations? An Empirical Study with Air Traffic Control Displays. Cartographica, 2016, 51, 25-37.	0.2	24
36	How Do Decision Time and Realism Affect Map-Based Decision Making?. Lecture Notes in Computer Science, 2011, , 1-19.	1.0	21

#	Article	IF	CITATIONS
37	Exploring maps by sounds: using parameter mapping sonification to make digital elevation models audible. International Journal of Geographical Information Science, 2018, 32, 874-906.	2.2	20
38	The advantage of globally visible landmarks for spatial learning. Journal of Environmental Psychology, 2020, 67, 101369.	2.3	20
39	Semantic Word Cloud Representations: Hardness and Approximation Algorithms. Lecture Notes in Computer Science, 2014, , 514-525.	1.0	20
40	The effects of visual realism, spatial abilities, and competition on performance in map-based route learning in men. Cartography and Geographic Information Science, 2018, 45, 339-353.	1.4	18
41	Crowdsourcing for Information Visualization: Promises and Pitfalls. Lecture Notes in Computer Science, 2017, , 96-138.	1.0	18
42	Commentary on "A History of Twentieth-Century American Academic Cartography" by Robert McMaster and Susanna McMaster. Cartography and Geographic Information Science, 2003, 30, 81-84.	1.4	17
43	The acquisition of survey knowledge for local and global landmark configurations under time pressure. Spatial Cognition and Computation, 2019, 19, 190-219.	0.6	17
44	The effect of instructions on distance and similarity judgements in information spatializations. International Journal of Geographical Information Science, 2008, 22, 463-478.	2.2	16
45	Making the Political Landscape Visible: Mapping and Analyzing Voting Patterns in an Ideological Space. Environment and Planning B: Planning and Design, 2007, 34, 785-807.	1.7	15
46	Colorful brains: 14years of display practice in functional neuroimaging. NeuroImage, 2013, 73, 30-39.	2.1	15
47	Evaluating the Usability of the Scale Metaphor for Querying Semantic Spaces. Lecture Notes in Computer Science, 2001, , 156-172.	1.0	15
48	The natural landscape metaphor in information visualization: The role of commonsense geomorphology. Journal of the Association for Information Science and Technology, 2010, 61, 253-270.	2.6	14
49	Toward flexible visual analytics augmented through smooth display transitions. Visual Informatics, 2021, 5, 28-38.	2.5	14
50	Cross-cultural differences in figure–ground perception of cartographic stimuli. Cartography and Geographic Information Science, 2019, 46, 82-94.	1.4	13
51	Effects of Uncertainty Visualization on Map-Based Decision Making Under Time Pressure. Frontiers in Computer Science, 2020, 2, .	1.7	13
52	Public Health Interventions, Epidemic Growth, and Regional Variation of the 1918 Influenza Pandemic Outbreak in a Swiss Canton and Its Greater Regions. Annals of Internal Medicine, 2021, 174, 533-539.	2.0	13
53	Geovisualization. Geographic Information Science & Technology Body of Knowledge, 2018, 2018, .	0.1	13
54	An empirical evaluation of three elevation change symbolization methods along routes in bicycle maps. Cartography and Geographic Information Science, 2017, 44, 436-451.	1.4	12

#	Article	IF	CITATIONS
55	Assessing how visual search entropy and engagement predict performance in a multiple-objects tracking air traffic control task. Computers in Human Behavior Reports, 2021, 4, 100127.	2.3	12
56	Cognitive perspectives on cartography and other geographic information visualizations. , 2018, , .		12
57	Adapting mobile map application designs to map use context: a review and call for action on potential future research themes. Cartography and Geographic Information Science, 2022, 49, 237-251.	1.4	12
58	An XML-based Infrastructure to Enhance Collaborative Geographic Visual Analytics. Cartography and Geographic Information Science, 2009, 36, 281-293.	1.4	11
59	GeoViz: interactive maps that help people think. International Journal of Geographical Information Science, 2014, 28, 2009-2012.	2.2	11
60	Visual Explorations for the Alexandria Digital Earth Prototype. Lecture Notes in Computer Science, 2002, , 199-213.	1.0	11
61	Against All Odds: Multicriteria Decision Making with Hazard Prediction Maps Depicting Uncertainty. Annals of the American Association of Geographers, 2020, 110, 661-683.	1.5	10
62	Creating Perceptually Salient Animated Displays of Spatiotemporal Coordination in Events. Lecture Notes in Geoinformation and Cartography, 2013, , 259-270.	0.5	10
63	Geovisualization and synergies from InfoVis and Visual Analytics. , 2007, , .		8
64	Assessing geographic relevance for mobile search: A computational model and its validation via crowdsourcing. Journal of the Association for Information Science and Technology, 2016, 67, 2620-2634.	1.5	8
65	Toward Empirically Verified Cartographic Displays. , 2015, , 711-730.		7
66	How does GIScience support spatio-temporal information search in the humanities?. Spatial Cognition and Computation, 2016, 16, 255-271.	0.6	7
67	A NOVEL APPROACH TO VETERINARY SPATIAL EPIDEMIOLOGY: DASYMETRIC REFINEMENT OF THE SWISS DOG TUMOR REGISTRY DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, II-3/W5, 263-269.	0.0	6
68	Assessing effects of structural zeros on models of canine cancer incidence: a case study of the Swiss Canine Cancer Registry. Geospatial Health, 2017, 12, 539.	0.3	5
69	The importance of regional models in assessing canine cancer incidences in Switzerland. PLoS ONE, 2018, 13, e0195970.	1.1	5
70	Exploring Uncertainty in Canine Cancer Data Sources Through Dasymetric Refinement. Frontiers in Veterinary Science, 2019, 6, 45.	0.9	5
71	3D Network Spatialization: Does It Add Depth to 2D Representations of Semantic Proximity?. Lecture Notes in Computer Science, 2014, , 34-47.	1.0	4

5

#	Article	IF	CITATIONS
73	The impact of landmark visualization style on expert wayfinders' cognitive load during navigation. Abstracts of the ICA, 0, 3, 1-3.	0.0	3
74	Virtual Reality as a Tool for Political Decision-Making? An Empirical Study on the Power of Immersive Images on Voting Behavior. Frontiers in Communication, 0, 7, .	0.6	3
75	Susceptibility of domain experts to color manipulation indicate a need for design principles in data visualization. PLoS ONE, 2021, 16, e0246479.	1.1	2
76	Distributing Attention Between Environment and Navigation System to Increase Spatial Knowledge Acquisition During Assisted Wayfinding. Lecture Notes in Geoinformation and Cartography, 2018, , 19-22.	0.5	2
77	Let's Put the Skyscrapers on the Display—Decoupling Spatial Learning from Working Memory. Lecture Notes in Geoinformation and Cartography, 2018, , 163-170.	0.5	1
78	How Can Geographic Information in Text Documents be Visualized to Support Information Exploration in the Humanities?. International Journal of Humanities and Arts Computing, 2020, 14, 98-118.	0.3	1
79	How are map-based decisions influenced by uncertainty visualization in risky and time-critical situations?. Abstracts of the ICA, 0, 1, 1-3.	0.0	1
80	Agglomerationen mit nutzergenerierten Inhalten neu definiert <i>Visualisierung der Nordostschweiz mithilfe von Wikipedia</i> . Disp, 2013, 49, 37-45.	0.8	0
81	SOMViz: Web-based Self-Organizing Maps. KN - Journal of Cartography and Geographic Information, 2015, 65, 81-91.	1.6	0
82	Do Skyscrapers Facilitate Spatial Learning Under Stress? On the Cognitive Processing of Global Landmarks. Lecture Notes in Geoinformation and Cartography, 2018, , 27-29.	0.5	0
83	Take That Flood+: Does your perspective matter?. Abstracts of the ICA, 0, 3, 1-3.	0.0	0