Shibali Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7785838/publications.pdf Version: 2024-02-01

SHIRALI DAS

#	Article	IF	CITATIONS
1	Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nature Communications, 2022, 13, 679.	12.8	30
2	The immune landscape in tuberculosis reveals populations linked to disease and latency. Cell Host and Microbe, 2021, 29, 165-178.e8.	11.0	98
3	Lung Epithelial Signaling Mediates Early Vaccine-Induced CD4 ⁺ T Cell Activation and <i>Mycobacterium tuberculosis</i> Control. MBio, 2021, 12, e0146821.	4.1	11
4	Development and Testing of a Spray-Dried Tuberculosis Vaccine Candidate in a Mouse Model. Frontiers in Pharmacology, 2021, 12, 799034.	3.5	6
5	Immune correlates of tuberculosis disease and risk translate across species. Science Translational Medicine, 2020, 12, .	12.4	52
6	S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. Journal of Clinical Investigation, 2020, 130, 3098-3112.	8.2	85
7	Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature, 2019, 570, 528-532.	27.8	153
8	A novel role for C–C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. Mucosal Immunology, 2018, 11, 1727-1742.	6.0	43
9	Mycobacterium indicus pranii (Mw) inhibits invasion by reducing matrix metalloproteinase (MMP-9) via AKT/ERK-1/2 and PKCα signaling: A potential candidate in melanoma cancer therapy. Cancer Biology and Therapy, 2017, 18, 850-862.	3.4	17
10	Rationalized design of a mucosal vaccine protects against <i>Mycobacterium tuberculosis</i> challenge in mice. Journal of Leukocyte Biology, 2017, 101, 1373-1381.	3.3	25
11	Interleukin-17 limits hypoxia-inducible factor 1α and development of hypoxic granulomas during tuberculosis. JCI Insight, 2017, 2, .	5.0	45
12	Yin and yang of interleukin-17 in host immunity to infection. F1000Research, 2017, 6, 741.	1.6	65
13	Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nature Communications, 2016, 7, 13894.	12.8	100
14	Mycobacterium indicus pranii (MIP) mediated host protective intracellular mechanisms against tuberculosis infection: Involvement of TLR-4 mediated signaling. Tuberculosis, 2016, 101, 201-209.	1.9	19
15	Leishmania donovani-Induced Prostaglandin E2 Generation Is Critically Dependent on Host Toll-Like Receptor 2–Cytosolic Phospholipase A2 Signaling. Infection and Immunity, 2016, 84, 2963-2973.	2.2	34
16	The Host-Protective Effect of Arabinosylated Lipoarabinomannan against Leishmania donovani Infection Is Associated with Restoration of IFN-Î ³ Responsiveness. PLoS ONE, 2015, 10, e0117247.	2.5	10
17	Toll-Like Receptor 2 Targeted Rectification of Impaired CD8+ T Cell Functions in Experimental Leishmania donovani Infection Reinstates Host Protection. PLoS ONE, 2015, 10, e0142800.	2.5	7
18	Immunomodulation in host-protective immune response against murine tuberculosis through regulation of the T regulatory cell function. Journal of Leukocyte Biology, 2015, 98, 827-836.	3.3	6

Shibali Das

#	Article	IF	CITATIONS
19	Arabinosylated lipoarabinomannan (Ara-LAM) mediated intracellular mechanisms against tuberculosis infection: Involvement of protein kinase C (PKC) mediated signaling. Tuberculosis, 2015, 95, 208-216.	1.9	9
20	Role of NF-κB activation and VEGF gene polymorphisms in VEGF up regulation in non-proliferative and proliferative diabetic retinopathy. Molecular and Cellular Biochemistry, 2015, 405, 265-279.	3.1	47
21	Glycyrrhizic Acid-Mediated Subdual of Myeloid-Derived Suppressor Cells Induces Antileishmanial Immune Responses in a Susceptible Host. Infection and Immunity, 2015, 83, 4476-4486.	2.2	18
22	Immunomodulation of host-protective immune response by regulating Foxp3 expression and Treg function in <i>Leishmania-</i> infected BALB/c mice: critical role of IRF1. Pathogens and Disease, 2015, 73, ftv063.	2.0	13
23	Immune Subversion by Mycobacterium tuberculosis through CCR5 Mediated Signaling: Involvement of IL-10. PLoS ONE, 2014, 9, e92477.	2.5	28
24	Correlates of Treatment Outcomes and Drug Resistance among Pulmonary Tuberculosis Patients Attending Tertiary Care Hospitals of Kolkata, India. PLoS ONE, 2014, 9, e109563.	2.5	12
25	TLR signaling-mediated differential histone modification at IL-10 and IL-12 promoter region leads to functional impairments in tumor-associated macrophages. Carcinogenesis, 2011, 32, 1789-1797.	2.8	35