Dongfeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7785553/publications.pdf Version: 2024-02-01

DONCEENC CHEN

#	Article	IF	CITATIONS
1	Advances in cell death - related signaling pathways in acute-on-chronic liver failure. Clinics and Research in Hepatology and Gastroenterology, 2022, 46, 101783.	0.7	6
2	Maclurin Promotes the Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Regulating miR-203a-3p/Smad1. Cellular Reprogramming, 2022, 24, 9-20.	0.5	3
3	The NSUN5-FTH1/FTL pathway mediates ferroptosis in bone marrow-derived mesenchymal stem cells. Cell Death Discovery, 2022, 8, 99.	2.0	27
4	<i>Atractylodes lancea</i> volatile oils target ADAR2â€miRâ€181aâ€5p signaling to mesenchymal stem cell chondrogenic differentiation. Anatomical Record, 2022, , .	0.8	3
5	The Comparative Efficacy of Non-ergot Dopamine Agonist and Potential Risk Factors for Motor Complications and Side Effects From NEDA Use in Early Parkinson's Disease: Evidence From Clinical Trials. Frontiers in Aging Neuroscience, 2022, 14, 831884.	1.7	1
6	Sorting Nexin 5 Plays an Important Role in Promoting Ferroptosis in Parkinson's Disease. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-9.	1.9	3
7	Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation. Communications Biology, 2022, 5, .	2.0	13
8	<scp>miR</scp> â€203aâ€3p promotes loureirin Aâ€induced hair follicle stem cells differentiation by targeting Smad1. Anatomical Record, 2021, 304, 531-540.	0.8	12
9	Ferroptosisâ€Inhibitory Effect and Possible Mechanisms of Ellagitannin Geraniin. ChemistryOpen, 2021, 10, 737-739.	0.9	4
10	Comparison of Ferroptosis-Inhibitory Mechanisms between Ferrostatin-1 and Dietary Stilbenes (Piceatannol and Astringin). Molecules, 2021, 26, 1092.	1.7	7
11	miR‑335 promotes ferroptosis by targeting ferritin heavy chain 1 in <i>inÂvivo</i> and <i>inÂvitro</i> models of Parkinson's disease. International Journal of Molecular Medicine, 2021, 47, .	1.8	36
12	Tannic Acid as a Natural Ferroptosis Inhibitor: Mechanisms and Beneficial Role of 3'â€ <i>O</i> â€Galloylation. ChemistrySelect, 2021, 6, 1562-1569.	0.7	3
13	Moxibustion Protects Dopaminergic Neurons in Parkinson's Disease through Antiferroptosis. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	0.5	6
14	Cyasterone accelerates fracture healing by promoting MSCs migration and osteogenesis. Journal of Orthopaedic Translation, 2021, 28, 28-38.	1.9	18
15	The effect of pro/synbiotics on postoperative infections in colorectal cancer patients: A systematic review and meta-analysis. Complementary Therapies in Clinical Practice, 2021, 43, 101370.	0.7	7
16	Potential Role of Traditional Chinese Medicines by Wnt/β-Catenin Pathway Compared With Targeted Small Molecules in Colorectal Cancer Therapy. Frontiers in Pharmacology, 2021, 12, 690501.	1.6	8
17	Antioxidant product analysis of Folium Hibisci Mutabilis. Journal of Saudi Chemical Society, 2021, 25, 101272.	2.4	9
18	Ferroptosis-Inhibitory Difference between Chebulagic Acid and Chebulinic Acid Indicates Beneficial Role of HHDP. Molecules, 2021, 26, 4300.	1.7	6

#	Article	IF	CITATIONS
19	Super-enhancer-driven Sorting Nexin 5 expression promotes dopaminergic neuronal ferroptosis in Parkinson's disease models. Biochemical and Biophysical Research Communications, 2021, 567, 35-41.	1.0	18
20	Protective effect of plastrum testudinis extract on dopaminergic neurons in a Parkinson's disease model through DNMT1 nuclear translocation and SNCA's methylation. Biomedicine and Pharmacotherapy, 2021, 141, 111832.	2.5	9
21	Integrated Bioinformatics Analysis of Potential mRNA and miRNA Regulatory Networks in Mice With Ischemic Stroke Treated by Electroacupuncture. Frontiers in Neurology, 2021, 12, 719354.	1.1	0
22	Cytoprotective effects of spleen-invigorating pill against 5-fluorouracil injury to mouse bone marrow stromal cells. Journal of Ethnopharmacology, 2021, 280, 114397.	2.0	1
23	Antioxidant product analysis of <i>Hulu Tea</i> (<i>Tadehagi triquetrum</i>). New Journal of Chemistry, 2021, 45, 20257-20265.	1.4	7
24	Effects of Aerobic Exercise and Mind-Body Exercise in Parkinson's Disease: A Mixed-Treatment Comparison Analysis. Frontiers in Aging Neuroscience, 2021, 13, 739115.	1.7	6
25	Experimental Models of Cognitive Impairment for Use in Parkinson's Disease Research: The Distance Between Reality and Ideal. Frontiers in Aging Neuroscience, 2021, 13, 745438.	1.7	5
26	Effect and mechanism of wedelolactone as antioxidant-coumestan on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mtext /></mml:mtext </mml:mrow></mml:msup><mml:mtext>OH</mml:mtext></mml:mrow>-treated mesenchymal stem cells. Arabian Journal of Chemistry, 2020, 13, 184-192.</mml:math 	2.3	39
27	Stearic acid methyl ester†promotes migration of mesenchymal stem cells and accelerates cartilage defect repair. Journal of Orthopaedic Translation, 2020, 22, 81-91.	1.9	10
28	Rhein attenuates lipopolysaccharide-primed inflammation through NF-κB inhibition in RAW264.7 cells: targeting the PPAR-γ signal pathway. Canadian Journal of Physiology and Pharmacology, 2020, 98, 357-365.	0.7	18
29	Wedelolactone facilitates Ser/Thr phosphorylation of NLRP3 dependent on PKA signalling to block inflammasome activation and pyroptosis. Cell Proliferation, 2020, 53, e12868.	2.4	50
30	(+)4-Cholesten-3-one promotes differentiation of neural stem cells into dopaminergic neurons through TET1 and FoxA2. Neuroscience Letters, 2020, 735, 135239.	1.0	6
31	Gallic Acid Alleviates Gouty Arthritis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Through Enhancing Nrf2 Signaling. Frontiers in Immunology, 2020, 11, 580593.	2.2	114
32	FTH1 Inhibits Ferroptosis Through Ferritinophagy in the 6-OHDA Model of Parkinson's Disease. Neurotherapeutics, 2020, 17, 1796-1812.	2.1	183
33	RNA Binding Protein Motif 3 Inhibits Oxygen-Glucose Deprivation/Reoxygenation-Induced Apoptosis Through Promoting Stress Granules Formation in PC12 Cells and Rat Primary Cortical Neurons. Frontiers in Cellular Neuroscience, 2020, 14, 559384.	1.8	13
34	Structure–activity relationship and mechanism of four monostilbenes with respect to ferroptosis inhibition. RSC Advances, 2020, 10, 31171-31179.	1.7	6
35	Src family kinases and pulmonary fibrosis: A review. Biomedicine and Pharmacotherapy, 2020, 127, 110183.	2.5	48
36	Methyltransferase 3 Mediated miRNA m6A Methylation Promotes Stress Granule Formation in the Early Stage of Acute Ischemic Stroke. Frontiers in Molecular Neuroscience, 2020, 13, 103.	1.4	70

#	Article	IF	CITATIONS
37	Inhibitory Effect and Mechanism of Action of Quercetin and Quercetin Diels-Alder anti-Dimer on Erastin-Induced Ferroptosis in Bone Marrow-Derived Mesenchymal Stem Cells. Antioxidants, 2020, 9, 205.	2.2	51
38	Simultaneous Study of Anti-Ferroptosis and Antioxidant Mechanisms of Butein and (S)-Butin. Molecules, 2020, 25, 674.	1.7	21
39	Plastrum Testudinis Extracts Promote NSC Differentiation into Dopaminergic Neuron by Regulating the Interaction of TET1 and FoxA2. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-13.	0.5	1
40	Comparative Analysis of Radical Adduct Formation (RAF) Products and Antioxidant Pathways between Myricetin-3-O-Galactoside and Myricetin Aglycone. Molecules, 2019, 24, 2769.	1.7	18
41	MiR-539-5p negatively regulates migration of rMSCs induced by Bushen Huoxue decoction through targeting Wnt5a. International Journal of Medical Sciences, 2019, 16, 998-1006.	1.1	4
42	Antioxidant and Cytoprotective effects of Pyrola decorata H. Andres and its five phenolic components. BMC Complementary and Alternative Medicine, 2019, 19, 275.	3.7	16
43	Antioxidant Mechanisms of Echinatin and Licochalcone A. Molecules, 2019, 24, 3.	1.7	51
44	miR‑488 negatively regulates osteogenic differentiation of bone marrow mesenchymal stem cells induced by psoralen by targeting Runx2. Molecular Medicine Reports, 2019, 20, 3746-3754.	1.1	16
45	Moxibustion Exerts a Neuroprotective Effect through Antiferroptosis in Parkinson's Disease. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-10.	0.5	21
46	3′,8″-Dimerization Enhances the Antioxidant Capacity of Flavonoids: Evidence from Acacetin and Isoginkgetin. Molecules, 2019, 24, 2039.	1.7	33
47	Antioxidant Change in Biosynthesis from Naringenin Chalcone to Flavonoid Apingenin. ChemistrySelect, 2019, 4, 5155-5159.	0.7	15
48	miR‑335 promotes stress granule formation to inhibit apoptosis by targeting ROCK2 in acute ischemic stroke. International Journal of Molecular Medicine, 2019, 43, 1452-1466.	1.8	34
49	miR‑134‑5p/Foxp2/Syn1 is involved in cognitive impairment in an early vascular dementia rat model. International Journal of Molecular Medicine, 2019, 44, 1729-1740.	1.8	10
50	Paeonol attenuates inflammation by targeting HMGB1 through upregulating miR-339-5p. Scientific Reports, 2019, 9, 19370.	1.6	23
51	TET2â€Mediated Spatiotemporal Changes of 5â€Hydroxymethylcytosine During Organogenesis in the Late Mouse Fetus. Anatomical Record, 2019, 302, 954-963.	0.8	4
52	A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. Journal of Clinical Investigation, 2019, 130, 438-450.	3.9	101
53	Chrysophanol demonstrates anti-inflammatory properties in LPS-primed RAW 264.7 macrophages through activating PPAR-Î ³ . International Immunopharmacology, 2018, 56, 90-97.	1.7	44
54	MicroRNA-210-5p Contributes to Cognitive Impairment in Early Vascular Dementia Rat Model Through Targeting Snap25. Frontiers in Molecular Neuroscience, 2018, 11, 388.	1.4	38

#	Article	IF	CITATIONS
55	Dual Effect of Glucuronidation of a Pyrogallol-type Phytophenol Antioxidant: A Comparison between Scutellarein and Scutellarin. Molecules, 2018, 23, 3225.	1.7	24
56	A Null B-Ring Improves the Antioxidant Levels of Flavonol: A Comparative Study between Galangin and 3,5,7-Trihydroxychromone. Molecules, 2018, 23, 3083.	1.7	20
57	Structure–Activity Relationship and Prediction of the Electronâ€Transfer Potential of the Xanthones Series. ChemistryOpen, 2018, 7, 730-736.	0.9	10
58	Steric Effect of Antioxidant Diels-Alder-Type Adducts: A Comparison of Sanggenon C with Sanggenon D. Molecules, 2018, 23, 2610.	1.7	7
59	Profiling the miRNA-mRNA-lncRNA interaction network in MSC osteoblast differentiation induced by (+)-cholesten-3-one. BMC Genomics, 2018, 19, 783.	1.2	19
60	pH Effect and Chemical Mechanisms of Antioxidant Higenamine. Molecules, 2018, 23, 2176.	1.7	28
61	Antioxidant and Cytoprotective Effects of the Di-O-Caffeoylquinic Acid Family: The Mechanism, Structure–Activity Relationship, and Conformational Effect. Molecules, 2018, 23, 222.	1.7	45
62	Protective Mechanism of the Antioxidant Baicalein toward Hydroxyl Radical-Treated Bone Marrow-Derived Mesenchymal Stem Cells. Molecules, 2018, 23, 223.	1.7	31
63	ï€-ï€ Conjugation Enhances Oligostilbene's Antioxidant Capacity: Evidence from α-Viniferin and Caraphenol A. Molecules, 2018, 23, 694.	1.7	19
64	Effect of Double Bond Position on 2-Phenyl-benzofuran Antioxidants: A Comparative Study of Moracin C and Iso-Moracin C. Molecules, 2018, 23, 754.	1.7	20
65	Antioxidant and Cytoprotective Effects of Kukoamines A and B: Comparison and Positional Isomeric Effect. Molecules, 2018, 23, 973.	1.7	20
66	Antioxidant Structure–Activity Relationship Analysis of Five Dihydrochalcones. Molecules, 2018, 23, 1162.	1.7	69
67	miR‑339‑5p negatively regulates loureirin A‑induced hair follicle stem cell differentiation by targeting DLX5. Molecular Medicine Reports, 2018, 18, 1279-1286.	1.1	16
68	2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide Radical (PTIO•) Trapping Activity and Mechanisms of 16 Phenolic Xanthones. Molecules, 2018, 23, 1692.	1.7	15
69	Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components. Molecules, 2018, 23, 179.	1.7	48
70	Paeonol Reduces the Nucleocytoplasmic Transportation of HMGB1 by Upregulating HDAC3 in LPS-Induced RAW264.7 Cells. Inflammation, 2018, 41, 1536-1545.	1.7	8
71	Antioxidation and Cytoprotection of Acteoside and Its Derivatives: Comparison and Mechanistic Chemistry. Molecules, 2018, 23, 498.	1.7	25
72	miR‑330‑5p inhibits H2O2‑induced adipogenic differentiation of MSCs by regulating RXRγ. International Journal of Molecular Medicine, 2018, 42, 2042-2052.	1.8	3

#	Article	IF	CITATIONS
73	E-Configuration Improves Antioxidant and Cytoprotective Capacities of Resveratrols. Molecules, 2018, 23, 1790.	1.7	13
74	Paeonol attenuates acute lung injury by inhibiting HMGB1 in lipopolysaccharide-induced shock rats. International Immunopharmacology, 2018, 61, 169-177.	1.7	29
75	Histone deacetylase-high mobility group box-1 pathway targeted by hypaconitine suppresses the apoptosis of endothelial cells. Experimental Biology and Medicine, 2017, 242, 527-535.	1.1	16
76	MicroRNA-125a-3p is involved in early behavioral disorders in stroke-afflicted rats through the regulation of Cadm2. International Journal of Molecular Medicine, 2017, 40, 1851-1859.	1.8	6
77	Lyophilized aqueous extracts of Mori Fructus and Mori Ramulus protect Mesenchymal stem cells from •OH–treated damage: bioassay and antioxidant mechanism. BMC Complementary and Alternative Medicine, 2017, 17, 242.	3.7	28
78	Role of the p-Coumaroyl Moiety in the Antioxidant and Cytoprotective Effects of Flavonoid Glycosides: Comparison of Astragalin and Tiliroside. Molecules, 2017, 22, 1165.	1.7	35
79	Two phenolic antioxidants in Suoyang enhance viability of •OH-damaged mesenchymal stem cells: comparison and mechanistic chemistry. Chemistry Central Journal, 2017, 11, 84.	2.6	13
80	The mechanism of (+) taxifolin's protective antioxidant effect for •OH-treated bone marrow-derived mesenchymal stem cells. Cellular and Molecular Biology Letters, 2017, 22, 31.	2.7	35
81	MiR-351 negatively regulates osteoblast differentiation of MSCs induced by (+)-cholesten-3-one through targeting VDR. American Journal of Translational Research (discontinued), 2017, 9, 4963-4973.	0.0	7
82	Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 6″-OH Group. Molecules, 2016, 21, 1246.	1.7	107
83	Protective Effects of Dihydromyricetin against •OH-Induced Mesenchymal Stem Cells Damage and Mechanistic Chemistry. Molecules, 2016, 21, 604.	1.7	37
84	Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale. Molecules, 2016, 21, 701.	1.7	110
85	Mechanistic Chemistry of Extraordinary Capacity of Salvianolic Acid B on Oxidativelyâ€damaged Mesenchymal Stem Cells. Journal of the Chinese Chemical Society, 2016, 63, 924-929.	0.8	6
86	Protective effect of berberine against oxidative stress-induced apoptosis in rat bone marrow-derived mesenchymal stem cells. Experimental and Therapeutic Medicine, 2016, 12, 4041-4048.	0.8	35
87	Sarcandra glabra (Caoshanhu) protects mesenchymal stem cells from oxidative stress: a bioevaluation and mechanistic chemistry. BMC Complementary and Alternative Medicine, 2016, 16, 423.	3.7	37
88	Paeonol Inhibits Lipopolysaccharide-Induced HMGB1 Translocation from the Nucleus to the Cytoplasm in RAW264.7 Cells. Inflammation, 2016, 39, 1177-87.	1.7	17
89	Nitric Oxide (NO) as Antioxidant Protects HT22 Cells and Biomolecules against Fenton's Reagentâ€Induced Damages via Multiple Pathways. ChemistrySelect, 2016, 1, 585-589.	0.7	1
90	Protective Effect of Sinapine against Hydroxyl Radical-Induced Damage to Mesenchymal Stem Cells and Possible Mechanisms. Chemical and Pharmaceutical Bulletin, 2016, 64, 319-325.	0.6	30

#	Article	IF	CITATIONS
91	Effects of Natural Chalcone–Tannin Hybrids Protecting Mesenchymal Stem Cells against ROS-mediated Oxidative Damage and Indexes for Antioxidant Mechanisms. Chemistry Letters, 2016, 45, 743-745.	0.7	9
92	XingNaoJing, prescription of traditional Chinese medicine, prevents autophagy in experimental stroke by repressing p53-DRAM pathway. BMC Complementary and Alternative Medicine, 2015, 15, 377.	3.7	20
93	Flos Chrysanthemi Indici protects against hydroxyl-induced damages to DNA and MSCs via antioxidant mechanism. Journal of Saudi Chemical Society, 2015, 19, 454-460.	2.4	58
94	<i>Herba Ecliptae</i> Protects against Hydroxyl Radicalâ€induced Damages to DNA and Mesenchymal Stem Cells via Antioxidant Mechanism. Journal of the Chinese Chemical Society, 2014, 61, 1161-1167.	0.8	4
95	Amentoflavone Protects against Hydroxyl Radical-induced DNA Damage via Antioxidant Mechanism. Turkish Journal of Biochemistry, 2014, 39, 30-36.	0.3	21
96	Maclurin protects against hydroxyl radical-induced damages to mesenchymal stem cells: Antioxidant evaluation and mechanistic insight. Chemico-Biological Interactions, 2014, 219, 221-228.	1.7	39
97	Chemical Study on Protective Effect Against Hydroxylâ€induced DNA Damage and Antioxidant Mechanism of Myricitrin. Journal of the Chinese Chemical Society, 2014, 61, 383-390.	0.8	29
98	Folium Sennae protects against hydroxyl radical-induced DNA damage via antioxidant mechanism: an in vitro study. , 2014, 55, 16.		8
99	Protective Effect Against Hydroxyl Radical-induced DNA Damage and Antioxidant Mechanism of [6]-gingerol: A Chemical Study. Bulletin of the Korean Chemical Society, 2014, 35, 1633-1638.	1.0	30
100	Protective Effect against Hydroxyl-induced DNA Damage and Antioxidant Activity of Radix Glycyrrhizae (Liquorice Root). Advanced Pharmaceutical Bulletin, 2013, 3, 167-73.	0.6	15
101	Protective Effect against Hydroxyl-induced DNA Damage and Antioxidant Activity of Citri reticulatae Pericarpium. Advanced Pharmaceutical Bulletin, 2013, 3, 175-81.	0.6	9
102	Concordance between antioxidant activities <i>inÂvitro</i> and chemical components of <i>Radix Astragali (Huangqi)</i> . Natural Product Research, 2012, 26, 1050-1053.	1.0	48
103	Antioxidant activity and mechanism of Rhizoma Cimicifugae. Chemistry Central Journal, 2012, 6, 140.	2.6	133
104	Antioxidant Ability and Mechanism of Rhizoma Atractylodes macrocephala. Molecules, 2012, 17, 13457-13472.	1.7	69
105	Evaluation of Antioxidant Activity of Isoferulic Acid in vitro. Natural Product Communications, 2011, 6, 1934578X1100600.	0.2	32
106	Antioxidant Activity and Mechanism of Protocatechuic Acid in vitro. Functional Foods in Health and Disease, 2011, 1, 232.	0.3	183
107	Evaluation of antioxidant activity of isoferulic acid in vitro. Natural Product Communications, 2011, 6, 1285-8.	0.2	35
108	Effect of fatty acid methyl esters from plastrum testudinis on proliferation of rat bone mesenchymal stem cells. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 262-266.	0.4	1