
Jianmin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7785154/publications.pdf Version: 2024-02-01

LIANMIN WANC

#	Article	IF	CITATIONS
1	Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling—Is it additive or synergistic?. Frontiers of Environmental Science and Engineering, 2022, 16, .	3.3	3
2	Quantifying the effect of nano-TiO2 on the toxicity of lead on C.Âdubia using a two-compartment modeling approach. Chemosphere, 2021, 263, 127958.	4.2	7
3	Implementation of long solids retention time activated sludge process for rural residential community. Water Environment Research, 2021, 93, 174-185.	1.3	5
4	Enhanced biological nitrogen removal under low dissolved oxygen in an anaerobic-anoxic-oxic system: Kinetics, stoichiometry and microbial community. Chemosphere, 2021, 263, 128184.	4.2	40
5	Enhancing nitrogen removal and reducing aeration energy for wastewater treatment with intermittent Modified Ludzack-Ettinger process: A field demonstration. Journal of Water Process Engineering, 2021, 43, 102303.	2.6	3
6	New insights into the effect of surfactants on oxygen mass transfer in activated sludge process. Journal of Environmental Chemical Engineering, 2020, 8, 104409.	3.3	8
7	Hazardous wastes treatment technologies. Water Environment Research, 2020, 92, 1833-1860.	1.3	10
8	Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	36
9	Filamentous organisms degrade oxygen transfer efficiency by increasing mixed liquor apparent viscosity: Mechanistic understanding and experimental verification. Water Research, 2020, 173, 115570.	5.3	16
10	Hazardous waste treatment technologies. Water Environment Research, 2019, 91, 1177-1198.	1.3	21
11	Activated sludge morphology significantly impacts oxygen transfer at the air–liquid boundary. Water Environment Research, 2019, 91, 500-509.	1.3	10
12	Algae (Raphidocelis) reduce combined toxicity of nano-TiO2 and lead on C. dubia. Science of the Total Environment, 2019, 686, 246-253.	3.9	7
13	Assessing activated sludge morphology and oxygen transfer performance using image analysis. Chemosphere, 2019, 223, 694-703.	4.2	17
14	Thiothrix eikelboomii interferes oxygen transfer in activated sludge. Water Research, 2019, 151, 134-143.	5.3	63
15	Formation of filamentous microorganisms impedes oxygen transfer and decreases aeration efficiency for wastewater treatment. Journal of Cleaner Production, 2018, 189, 502-509.	4.6	28
16	Effect of TiO 2 nanoparticle aggregation on marine microalgae Isochrysis galbana. Journal of Environmental Sciences, 2018, 66, 208-215.	3.2	47
17	Leaching Assessment of Eco-Friendly Rubberized Chip Seal Pavement. Transportation Research Record, 2018, 2672, 67-77.	1.0	9
18	Hazardous Wastes Treatment Technologies. Water Environment Research, 2018, 90, 1679-1719.	1.3	2

JIANMIN WANG

#	Article	IF	CITATIONS
19	Reduced zinc leaching from scrap tire during pavement applications. Waste Management, 2018, 81, 53-60.	3.7	11
20	Achieving advanced nitrogen removal for small flow wastewater using a baffled bioreactor (BBR) with intermittent aeration. Journal of Environmental Management, 2017, 199, 222-228.	3.8	8
21	Enhanced removal of total nitrogen and total phosphorus by applying intermittent aeration to the Modified Ludzack-Ettinger (MLE) process. Journal of Cleaner Production, 2017, 166, 163-171.	4.6	34
22	N-nitrosamine formation by monochloramine, free chlorine, and peracetic acid disinfection with presence of amine precursors in drinking water system. Chemosphere, 2016, 153, 521-527.	4.2	46
23	Role of Solids Retention Time in Ammonia-Based Feedback Aeration Control. Journal of Environmental Engineering, ASCE, 2016, 142, 04016029.	0.7	3
24	Modeling effects of DO and SRT on activated sludge decay and production. Water Research, 2015, 80, 169-178.	5.3	37
25	Quantifying the chronic effect of low DO on the nitrification process. Chemosphere, 2015, 141, 19-25.	4.2	31
26	Weak magnetic field accelerates chromate removal by zero-valent iron. Journal of Environmental Sciences, 2015, 31, 175-183.	3.2	64
27	Reducing arsenic accumulation in rice grain through iron oxide amendment. Ecotoxicology and Environmental Safety, 2015, 118, 55-61.	2.9	50
28	Role of Solids Retention Time on Complete Nitrification: Mechanistic Understanding and Modeling. Journal of Environmental Engineering, ASCE, 2014, 140, 48-56.	0.7	35
29	Specific chemical interactions between metal ions and biological solids exemplified by sludge particulates. Bioresource Technology, 2014, 160, 32-42.	4.8	9
30	Effect of Weak Magnetic Field on Arsenate and Arsenite Removal from Water by Zerovalent Iron: An XAFS Investigation. Environmental Science & Technology, 2014, 48, 6850-6858.	4.6	132
31	Long-Term Low DO Enriches and Shifts Nitrifier Community in Activated Sludge. Environmental Science & Technology, 2013, 47, 5109-5117.	4.6	218
32	Increased Leaching of As, Se, Mo, and V from High Calcium Coal Ash Containing Trona Reaction Products. Energy & Fuels, 2013, 27, 1531-1537.	2.5	4
33	Baffled Bioreactor for Municipal Wastewater Treatment. Journal of Environmental Engineering, ASCE, 2012, 138, 239-247.	0.7	4
34	Quantifying the effect of nanoparticles on As(V) ecotoxicity exemplified by nanoâ€Fe ₂ O ₃ (magnetic) and nanoâ€Al ₂ O ₃ . Environmental Toxicology and Chemistry, 2012, 31, 2870-2876.	2.2	21
35	Probing the stoichiometry of the nitrification process using the respirometric approach. Water Research, 2012, 46, 5954-5962.	5.3	43
36	Effects of Nano-Copper(II) Oxide and Nano-Magnesium Oxide Particles on Activated Sludge. Water Environment Research, 2012, 84, 569-576.	1.3	24

JIANMIN WANG

#	Article	IF	CITATIONS
37	Toxicity of lead on Ceriodaphnia dubia in the presence of nano-CeO2 and nano-TiO2. Chemosphere, 2012, 89, 536-541.	4.2	37
38	Bioaccumulation of Fe2O3(magnetic) nanoparticles in Ceriodaphnia dubia. Environmental Pollution, 2012, 162, 216-222.	3.7	55
39	Impact of Trona-Based SO ₂ Control on the Elemental Leaching Behavior of Fly Ash. Energy & Fuels, 2011, 25, 3514-3521.	2.5	9
40	Arsenic Accumulation in Rice Grains: Effects of Cultivars and Water Management Practices. Environmental Engineering Science, 2011, 28, 591-596.	0.8	31
41	Synergistic toxic effect of nano-TiO2 and As(V) on Ceriodaphnia dubia. Science of the Total Environment, 2011, 409, 1351-1356.	3.9	79
42	Effect of ZnO particles on activated sludge: Role of particle dissolution. Science of the Total Environment, 2011, 409, 2852-2857.	3.9	93
43	Synergistic toxic effect of nano-Al2O3 and As(V) on Ceriodaphnia dubia. Environmental Pollution, 2011, 159, 3003-3008.	3.7	44
44	Modeling batch leaching behavior of arsenic and selenium from bituminous coal fly ashes. Chemosphere, 2011, 85, 1368-1374.	4.2	28
45	Characteristics and model studies for fluoride and arsenic adsorption on goethite. Journal of Environmental Sciences, 2010, 22, 1689-1694.	3.2	58
46	Predicting competitive adsorption behavior of major toxic anionic elements onto activated alumina: A speciation-based approach. Journal of Hazardous Materials, 2010, 176, 466-472.	6.5	19
47	Quantifying effects of pH and surface loading on arsenic adsorption on NanoActive alumina using a speciation-based model. Journal of Hazardous Materials, 2009, 166, 39-45.	6.5	36
48	Fluoride adsorption onto granular ferric hydroxide: Effects of ionic strength, pH, surface loading, and major co-existing anions. Journal of Hazardous Materials, 2009, 171, 774-779.	6.5	144
49	Fluoride adsorption onto activated alumina: Modeling the effects of pH and some competing ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 337, 33-38.	2.3	116
50	Leaching Characteristics of Arsenic and Selenium from Coal Fly Ash: Role of Calcium. Energy & Fuels, 2009, 23, 2959-2966.	2.5	68
51	Adsorption characteristics of As(V), Se(IV), and V(V) onto activated alumina: Effects of pH, surface loading, and ionic strength. Journal of Colloid and Interface Science, 2008, 326, 347-353.	5.0	73
52	Removal of arsenic from water using granular ferric hydroxide: Macroscopic and microscopic studies. Journal of Hazardous Materials, 2008, 156, 178-185.	6.5	166
53	Distribution of toxic trace elements in soil/sediment in post-Katrina New Orleans and the Louisiana Delta. Environmental Pollution, 2008, 156, 944-950.	3.7	15
54	Adsorption of arsenic(V) onto fly ash: A speciation-based approach. Chemosphere, 2008, 72, 381-388.	4.2	58

JIANMIN WANG

#	Article	IF	CITATIONS
55	The Leaching Characteristics of Selenium from Coal Fly Ashes. Journal of Environmental Quality, 2007, 36, 1784-1792.	1.0	43
56	The role of ammonia on mercury leaching from coal fly ash. Chemosphere, 2007, 69, 1586-1592.	4.2	19
57	Quantifying the availability and the stability of trace cationic elements in fly ash. Waste Management, 2007, 27, 1345-1355.	3.7	5
58	Impacts of pH and ammonia on the leaching of Cu(II) and Cd(II) from coal fly ash. Chemosphere, 2006, 64, 1892-1898.	4.2	68
59	Predicting metals partitioning in wastewater treatment plant influents. Water Research, 2006, 40, 1333-1340.	5.3	20
60	Characterizing the Metal Adsorption Capability of a Class F Coal Fly Ash. Environmental Science & Technology, 2004, 38, 6710-6715.	4.6	75
61	Modeling heavy metal uptake by sludge particulates in the presence of dissolved organic matter. Water Research, 2003, 37, 4835-4842.	5.3	53
62	Interactions of silver with wastewater constituents. Water Research, 2003, 37, 4444-4452.	5.3	40
63	Surface Physical-Chemical Characteristics of Sludge Particulates. Water Environment Research, 2000, 72, 545-553.	1.3	45