Kentaro Kaneko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/778491/publications.pdf

Version: 2024-02-01

67 1,840 25 41 papers citations h-index g-index

68 68 909
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Novel p-type oxides with corundum structure for gallium oxide electronics. Journal of Materials Research, 2022, 37, 651-659.	1.2	7
2	Prospects for phase engineering of semi-stable Ga2O3 semiconductor thin films using mist chemical vapor deposition. Journal of Applied Physics, 2022, 131, .	1.1	31
3	Analysis of Deep Traps in Mist Chemical Vapor Depositionâ€Grown nâ€Type αâ€Ga ₂ O ₃ by Photocapacitance Method. Physica Status Solidi (B): Basic Research, 2021, 258, 2000622.	0.7	6
4	Thermal stability of α-(Al _x Ga _{1–x}) ₂ O ₃ films grown on c-plane sapphire substrates with an Al composition up to 90%. Japanese Journal of Applied Physics, 2021, 60, SBBD13.	0.8	13
5	Ultra-wide bandgap corundum-structured p-type <code> </code>	1.5	36
6	Initial nucleation scheme of Ga $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ on (0001) sapphire by mist CVD for the growth of $\hat{l}\pm$ -phase. Japanese Journal of Applied Physics, 2021, 60, 055501.	0.8	13
7	Synthesis of Metastable or Non-Equilibrium-Phased Oxides by the Mist CVD method. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 369-373.	0.1	1
8	Establishment of a growth route of crystallized rutile GeO2 thin film ($<$ b> 2 % $<$ b> 1 <i>$1$4</i> m/h) and its structural properties. Applied Physics Letters, 2021, 119, .	1.5	18
9	Identification of free and bound exciton emission of MgO single crystal in vacuum ultraviolet spectral range. Applied Physics Letters, 2021, 119, .	1.5	7
10	Research of Semiconductor Materials That Emit in the Vacuum Ultraviolet Region of 200 nm or Less. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 727-731.	0.1	0
11	Thermal stability of \hat{l} ±-Ga2O3 films grown on c-plane sapphire substrates via mist-CVD. AIP Advances, 2020, 10, .	0.6	26
12	Impact of hydrochloric acid on the epitaxial growth of $\ln \cdot 2 \cdot sub>0 \cdot sub>3 \cdot sub>$ films on $(0001) \cdot s + \langle s$	1.1	6
13	Synthesis of High-Quality α-Ga ₂ O ₃ thin films on Sapphire Substrates with Introduction of Buffer Layers. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 707-711.	0.1	0
14	Enhancement of epitaxial lateral overgrowth in the mist chemical vapor deposition of $\langle i \rangle$ (1±)-Ga ₂ O ₃ by using a-plane sapphire substrate. Japanese Journal of Applied Physics, 2019, 58, 120912.	0.8	28
15	Pure deep-ultraviolet cathodoluminescence from rocksalt-structured MgZnO grown with carbon-free precursors. Applied Physics Express, 2019, 12, 052011.	1.1	18
16	An Nightmare of the Day before Christmas Eve. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 731-732.	0.1	0
17	Synthesis of Metastable or Non-Equilibrium Phased Oxides and Their Physical Properties. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 733-738.	0.1	0
18	A power device material of corundum-structured î±-Ga ₂ O ₃ fabricated by MIST EPITAXY [®] technique. Japanese Journal of Applied Physics, 2018, 57, 02CB18.	0.8	76

#	Article	IF	CITATIONS
19	Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates. MRS Advances, 2018, 3, 171-177.	0.5	41
20	Control of Crystal Structure of Ga ₂ O ₃ on Sapphire Substrate by Introduction of αâ€(Al <i>_x</i> Ca _{1â°'<i>x</i>Ca_{)₂O₃ Buffer Layer. Physica Status Solidi (B): Basic Research, 2018, 255, 1700326.}}	0.7	41
21	Evaluation of band alignment of α-Ga ₂ 6. Sub>31/1±-(Al <i>34. Sub>4. Sub>4. Sub>12. Sub>12. Sub>4. Sub>4.</i>	/ ฮมฮ >O<รเ	น ย_ั 63
22	Electrical properties of \hat{l} ±-lr2O3/ \hat{l} ±-Ga2O3 pn heterojunction diode and band alignment of the heterostructure. Applied Physics Letters, 2018, 113, .	1.5	74
23	Study on corundum-structured p-type iridium oxide thin films and band alignment at iridium oxide /gallium oxide hetero-junction. , 2018 , , .		2
24	Tin oxide coating by nonvacuum-based mist chemical vapor deposition on stainless steel separators for polymer electrolyte fuel cells. Japanese Journal of Applied Physics, 2018, 57, 117103.	0.8	22
25	Deep-Ultraviolet Luminescence of Rocksalt-Structured MgxZn1â^'xO (x > 0.5) Films on MgO Substrates. Journal of Electronic Materials, 2018, 47, 4356-4360.	1.0	15
26	Unpredicted surface termination of \hat{l}_{\pm} -Fe 2 O 3 (0001) film grown by mist chemical vapor deposition. Surface Science, 2017, 660, 9-15.	0.8	9
27	Corundum-Structured α-ln2O3 as a Wide-Bandgap Semiconductor for Electrical Devices. MRS Advances, 2017, 2, 301-307.	0.5	6
28	Corundum-strructured \hat{l}_{\pm} -Ga <inf>2</inf> O <inf>3</inf> -based alloys for future power device applications. , 2017, , .		1
29	Recent Advancement of Semiconductor Materials and Devices. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 58-65.	0.1	3
30	Metal Separator of Fuel Cells Coated with Highly Conductive and Highly Corrosion-Resistant Oxide Thin Films. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 639-643.	0.1	3
31	Ga ₂ O ₃ Crystal for Power Device. Journal of the Institute of Electrical Engineers of Japan, 2017, 137, 693-696.	0.0	0
32	Crystal Growth and Device Applications of Corundum-Structured Gallium Oxide. Zairyo/Journal of the Society of Materials Science, Japan, 2016, 65, 631-637.	0.1	0
33	$Characterization of band offset in \hat{I}±-(AlxGa1-x)2O3/ \hat{I}±-Ga2O3$		1
34	Surface termination structure of α-Ga2O3 film grown by mist chemical vapor deposition. Applied Physics Letters, 2016, 108, 251602.	1.5	25
35	Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices. Japanese Journal of Applied Physics, 2016, 55, 1202A3.	0.8	106
36	Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition. Japanese Journal of Applied Physics, 2016, 55, 1202B8.	0.8	79

#	Article	IF	CITATIONS
37	Fabrication of \hat{l}_{\pm} -Ga <inf>2</inf> O <inf>3</inf> thin films using properties. , 2016, , .		O
38	Conductivity control of Sn-doped α-Ga ₂ O ₃ thin films grown on sapphire substrates. Japanese Journal of Applied Physics, 2016, 55, 1202BA.	0.8	91
39	Growth of rocksalt-structured Mg $<$ sub $>$ x $<$ /sub $>$ Zn $<$ sub $>$ 1 \hat{a} ° $<$ /sub $>$ $<$ sub $>$ x $<$ /sub $>$ O (x > 0.5) films on MgO substrates and their deep-ultraviolet luminescence. Applied Physics Express, 2016, 9, 111102.	1.1	26
40	Crack-free thick ($\hat{a}^1/45 \hat{A}\mu m$) \hat{l} ±-Ga ₂ O ₃ films on sapphire substrates with \hat{l} ±-(Al,Ga) ₂ O ₃ buffer layers. Japanese Journal of Applied Physics, 2016, 55, 1202B4.	0.8	32
41	Reduction in edge dislocation density in corundum-structured $\hat{l}\pm$ -Ga ₂ O ₃ layers on sapphire substrates with quasi-graded $\hat{l}\pm$ -(Al,Ga) ₂ O ₃ buffer layers. Applied Physics Express, 2016, 9, 071101.	1.1	76
42	Growth characteristics of corundum-structured \hat{l}_{\pm} -(Al Ga1 \hat{a}^{-})2O3/Ga2O3 heterostructures on sapphire substrates. Journal of Crystal Growth, 2016, 436, 150-154.	0.7	72
43	Vertical Schottky barrier diodes of α-Ga <inf>2</inf> O <inf>3</inf> fabricated by mist epitaxy. , 2015, , .		6
44	Growth and metal–oxide–semiconductor field-effect transistors of corundum-structured alpha indium oxide semiconductors. Applied Physics Express, 2015, 8, 095503.	1.1	19
45	Fabrication of Cu ₂ ZnSnS ₄ Thin Films by Ultrasonic-Atomized Mist Methods. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 410-413.	0.1	4
46	Enhanced thermal stability of alpha gallium oxide films supported by aluminum doping. Japanese Journal of Applied Physics, 2015, 54, 030301.	0.8	50
47	Faraday effect of bismuth iron garnet thin film prepared by mist CVD method. Japanese Journal of Applied Physics, 2015, 54, 063001.	0.8	14
48	Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. Journal of Crystal Growth, 2014, 401, 588-592.	0.7	129
49	Ultrasonicâ€essisted mist chemical vapor deposition of IIâ€oxide and related oxide compounds. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1225-1228.	0.8	28
50	Preparation of yttrium iron garnet thin films by mist chemical vapor deposition method and their magneto-optical properties. Japanese Journal of Applied Physics, 2014, 53, 05FB17.	0.8	8
51	Growth of corundum-structured (In $Ga1\hat{a}^{\circ}$)2O3 alloy thin films on sapphire substrates with buffer layers. Journal of Crystal Growth, 2014, 401, 670-672.	0.7	46
52	Band gap and function engineering for novel functional alloy semiconductors: Bloomed as magnetic properties at room temperature with \hat{l} ±-(GaFe)2O3. Journal of Applied Physics, 2013, 113, .	1.1	62
53	Growth of corundum-structured In2O3 thin films on sapphire substrates with Fe2O3 buffer layers. Journal of Crystal Growth, 2013, 364, 30-33.	0.7	62
54	Fabrication of Corundum-Structured α-(InFe)2O3 Alloy Films on Sapphire Substrates by Inserting α-Fe2O3 Buffer Layer. Materials Research Society Symposia Proceedings, 2013, 1494, 221-225.	0.1	1

#	Article	IF	Citations
55	Crystal Structure of Non-Doped and Sn-Doped \hat{l}_{\pm} -(GaFe)2O3 Thin Films Materials Research Society Symposia Proceedings, 2013, 1494, 147-152.	0.1	3
56	Oriented growth of beta gallium oxide thin films on yttriumâ€stabilized zirconia substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1596-1599.	0.8	23
57	Evaluation of Misfit Relaxation in α-Ga ₂ O ₃ Epitaxial Growth on α-Al ₂ O ₃ Substrate. Japanese Journal of Applied Physics, 2012, 51, 020201.	0.8	63
58	Growth and Band Gap Control of Corundum-Structured \hat{l} ±-(AlGa) ₂ O ₃ Thin Films on Sapphire by Spray-Assisted Mist Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 100207.	0.8	83
59	Evaluation of Misfit Relaxation in α-Ga ₂ O ₃ Epitaxial Growth on α-Al ₂ O ₃ Substrate. Japanese Journal of Applied Physics, 2012, 51, 020201.	0.8	20
60	Growth and Band Gap Control of Corundum-Structured α-(AlGa) ₂ O ₃ Thin Films on Sapphire by Spray-Assisted Mist Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 100207.	0.8	29
61	Fabrication of Lithium-Based Oxide Thin Films by Ultrasonic-Assisted Mist CVD Technique. Zairyo/Journal of the Society of Materials Science, Japan, 2011, 60, 994-997.	0.1	3
62	Corundumâ€structured αâ€phase Ga ₂ O ₃ 33333333333333333333334467-2470.	0.8	35
63	Fabrication by Mist CVD Method and Evaluation of Corundum Structured Oxide Semiconductor Thin Films. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 686-689.	0.1	4
64	Mist Deposition Technique as a Green Chemical Route for Synthesizing Oxide and Organic Thin Films. Materials Research Society Symposia Proceedings, 2009, 1220, 4061.	0.1	3
65	Fabrication of Highly Crystalline Corundum-Structured α-(Ga _{1-<i>x</i>} Fe _{<i>x</i>}) ₂ O ₃ Alloy Thin Films on Sapphire Substrates. Applied Physics Express, 0, 2, 075501.	1.1	83
66	Mist Chemical Vapor Deposition Growth of αâ€ŀn 2 O 3 Films Using Indium Oxide Powder as Source Precursor. Physica Status Solidi (B): Basic Research, 0, , 2100414.	0.7	3
67	VUV emission properties of rocksaltâ€structured MgZnO microcrystals prepared on quartz glass substrates. Physica Status Solidi (B): Basic Research, 0, , 2100354.	0.7	1