
Kentaro Kaneko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/778491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. Journal of Crystal Growth, 2014, 401, 588-592.	0.7	129
2	Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices. Japanese Journal of Applied Physics, 2016, 55, 1202A3.	0.8	106
3	Conductivity control of Sn-doped α-Ga ₂ O ₃ thin films grown on sapphire substrates. Japanese Journal of Applied Physics, 2016, 55, 1202BA.	0.8	91
4	Fabrication of Highly Crystalline Corundum-Structured α-(Ga _{1-<i>x</i>} Fe _{<i>x</i>}) ₂ O ₃ Alloy Thin Films on Sapphire Substrates. Applied Physics Express, 0, 2, 075501.	1.1	83
5	Growth and Band Gap Control of Corundum-Structured α-(AlGa) ₂ O ₃ Thin Films on Sapphire by Spray-Assisted Mist Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 100207.	0.8	83
6	Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition. Japanese Journal of Applied Physics, 2016, 55, 1202B8.	0.8	79
7	Reduction in edge dislocation density in corundum-structured α-Ga ₂ O ₃ layers on sapphire substrates with quasi-graded α-(Al,Ga) ₂ O ₃ buffer layers. Applied Physics Express, 2016, 9, 071101.	1.1	76
8	A power device material of corundum-structured α-Ga ₂ O ₃ fabricated by MIST EPITAXY [®] technique. Japanese Journal of Applied Physics, 2018, 57, 02CB18.	0.8	76
9	Electrical properties of \hat{l} ±-lr2O3/ \hat{l} ±-Ga2O3 pn heterojunction diode and band alignment of the heterostructure. Applied Physics Letters, 2018, 113, .	1.5	74
10	Growth characteristics of corundum-structured α-(Al Ga1â^')2O3/Ga2O3 heterostructures on sapphire substrates. Journal of Crystal Growth, 2016, 436, 150-154.	0.7	72
11	Evaluation of Misfit Relaxation in α-Ga ₂ O ₃ Epitaxial Growth on α-Al ₂ O ₃ Substrate. Japanese Journal of Applied Physics, 2012, 51, 020201.	0.8	63
12	Band gap and function engineering for novel functional alloy semiconductors: Bloomed as magnetic properties at room temperature with α-(GaFe)2O3. Journal of Applied Physics, 2013, 113, .	1.1	62
13	Growth of corundum-structured In2O3 thin films on sapphire substrates with Fe2O3 buffer layers. Journal of Crystal Growth, 2013, 364, 30-33.	0.7	62
14	Enhanced thermal stability of alpha gallium oxide films supported by aluminum doping. Japanese Journal of Applied Physics, 2015, 54, 030301.	0.8	50
15	Growth of corundum-structured (In Ga1â^')2O3 alloy thin films on sapphire substrates with buffer layers. Journal of Crystal Growth, 2014, 401, 670-672.	0.7	46
16	Evaluation of band alignment of α-Ga ₂ O ₃ /α-(Al <i>_x</i> Ga _{1â^'} <i>_x2/i>)_{2 by X-ray photoelectron spectroscopy. Japanese Journal of Applied Physics, 2018, 57, 040314.}</i>	<b 3018>O <s< td=""><td>subø3</td></s<>	su b ø3
17	Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates. MRS Advances, 2018, 3, 171-177.	0.5	41
	Control of Crystal Structure of Cazeub 22/sub Ozeub 32/sub on Sapphire Substrate by		

Control of Crystal Structure of Ga₂O₃ on Sapphire Substrate by Introduction of αâ€(Al<i>_x</i>Ga_{1â^'<i>x</i>})₂O₃ Buffer 0.7 41 Layer. Physica Status Solidi (B): Basic Research, 2018, 255, 1700326.

Kentaro Kaneko

#	Article	IF	CITATIONS
19	Ultra-wide bandgap corundum-structured p-type <i>α</i> -(Ir,Ga)2O3 alloys for <i>α</i> -Ga2O3 electronics. Applied Physics Letters, 2021, 118, .	1.5	36
20	Corundumâ€structured αâ€phase Ga ₂ O ₃ â€Cr ₂ O ₃ â€Fe ₂ O ₃ alloy system for novel functions. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2467-2470.	0.8	35
21	Crack-free thick (â^1⁄45 µm) α-Ga ₂ O ₃ films on sapphire substrates with α-(Al,Ga) ₂ O ₃ buffer layers. Japanese Journal of Applied Physics, 2016, 55, 1202B4.	0.8	32
22	Prospects for phase engineering of semi-stable Ga2O3 semiconductor thin films using mist chemical vapor deposition. Journal of Applied Physics, 2022, 131, .	1.1	31
23	Growth and Band Gap Control of Corundum-Structured α-(AlGa) ₂ O ₃ Thin Films on Sapphire by Spray-Assisted Mist Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 100207.	0.8	29
24	Ultrasonicâ€essisted mist chemical vapor deposition of Ilâ€oxide and related oxide compounds. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1225-1228.	0.8	28
25	Enhancement of epitaxial lateral overgrowth in the mist chemical vapor deposition of <i>l±</i> -Ga ₂ O ₃ by using a-plane sapphire substrate. Japanese Journal of Applied Physics, 2019, 58, 120912.	0.8	28
26	Growth of rocksalt-structured Mg _x Zn _{1â^'} _x O (x > 0.5) films on MgO substrates and their deep-ultraviolet luminescence. Applied Physics Express, 2016, 9, 111102.	1.1	26
27	Thermal stability of α-Ga2O3 films grown on c-plane sapphire substrates via mist-CVD. AIP Advances, 2020, 10, .	0.6	26
28	Surface termination structure of α-Ga2O3 film grown by mist chemical vapor deposition. Applied Physics Letters, 2016, 108, 251602.	1.5	25
29	Oriented growth of beta gallium oxide thin films on yttriumâ€stabilized zirconia substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1596-1599.	0.8	23
30	Tin oxide coating by nonvacuum-based mist chemical vapor deposition on stainless steel separators for polymer electrolyte fuel cells. Japanese Journal of Applied Physics, 2018, 57, 117103.	0.8	22
31	Evaluation of Misfit Relaxation in α-Ga ₂ O ₃ Epitaxial Growth on α-Al ₂ O ₃ Substrate. Japanese Journal of Applied Physics, 2012, 51, 020201.	0.8	20
32	Growth and metal–oxide–semiconductor field-effect transistors of corundum-structured alpha indium oxide semiconductors. Applied Physics Express, 2015, 8, 095503.	1.1	19
33	Pure deep-ultraviolet cathodoluminescence from rocksalt-structured MgZnO grown with carbon-free precursors. Applied Physics Express, 2019, 12, 052011.	1.1	18
34	Establishment of a growth route of crystallized rutile GeO2 thin film (≧ 1 <i>μ</i> m/h) and its structural properties. Applied Physics Letters, 2021, 119, .	1.5	18
35	Deep-Ultraviolet Luminescence of Rocksalt-Structured MgxZn1â^'xO (x > 0.5) Films on MgO Substrates. Journal of Electronic Materials, 2018, 47, 4356-4360.	1.0	15
36	Faraday effect of bismuth iron garnet thin film prepared by mist CVD method. Japanese Journal of Applied Physics, 2015, 54, 063001.	0.8	14

#	Article	IF	CITATIONS
37	Thermal stability of α-(Al _x Ga _{1–x}) ₂ O ₃ films grown on c-plane sapphire substrates with an Al composition up to 90%. Japanese Journal of Applied Physics, 2021, 60, SBBD13.	0.8	13
38	Initial nucleation scheme of Ga ₂ O ₃ on (0001) sapphire by mist CVD for the growth of α-phase. Japanese Journal of Applied Physics, 2021, 60, 055501.	0.8	13
39	Unpredicted surface termination of α-Fe 2 O 3 (0001) film grown by mist chemical vapor deposition. Surface Science, 2017, 660, 9-15.	0.8	9
40	Preparation of yttrium iron garnet thin films by mist chemical vapor deposition method and their magneto-optical properties. Japanese Journal of Applied Physics, 2014, 53, 05FB17.	0.8	8
41	Identification of free and bound exciton emission of MgO single crystal in vacuum ultraviolet spectral range. Applied Physics Letters, 2021, 119, .	1.5	7
42	Novel p-type oxides with corundum structure for gallium oxide electronics. Journal of Materials Research, 2022, 37, 651-659.	1.2	7
43	Vertical Schottky barrier diodes of α-Ga <inf>2</inf> O <inf>3</inf> fabricated by mist epitaxy. , 2015, , .		6
44	Corundum-Structured α-In2O3 as a Wide-Bandgap Semiconductor for Electrical Devices. MRS Advances, 2017, 2, 301-307.	0.5	6
45	Impact of hydrochloric acid on the epitaxial growth of In ₂ O ₃ films on (0001) <i>î±</i> Al ₂ O ₃ substrates by mist CVD. Applied Physics Express, 2020, 13, 075504.	1.1	6
46	Analysis of Deep Traps in Mist Chemical Vapor Depositionâ€Grown nâ€īype αâ€Ga ₂ O _{3by Photocapacitance Method. Physica Status Solidi (B): Basic Research, 2021, 258, 2000622.}	0.7	6
47	Fabrication of Cu ₂ ZnSnS ₄ Thin Films by Ultrasonic-Atomized Mist Methods. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 410-413.	0.1	4
48	Fabrication by Mist CVD Method and Evaluation of Corundum Structured Oxide Semiconductor Thin Films. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 686-689.	0.1	4
49	Mist Deposition Technique as a Green Chemical Route for Synthesizing Oxide and Organic Thin Films. Materials Research Society Symposia Proceedings, 2009, 1220, 4061.	0.1	3
50	Crystal Structure of Non-Doped and Sn-Doped α-(GaFe)2O3 Thin Films Materials Research Society Symposia Proceedings, 2013, 1494, 147-152.	0.1	3
51	Recent Advancement of Semiconductor Materials and Devices. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 58-65.	0.1	3
52	Fabrication of Lithium-Based Oxide Thin Films by Ultrasonic-Assisted Mist CVD Technique. Zairyo/Journal of the Society of Materials Science, Japan, 2011, 60, 994-997.	0.1	3
53	Metal Separator of Fuel Cells Coated with Highly Conductive and Highly Corrosion-Resistant Oxide Thin Films. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 639-643.	0.1	3
54	Mist Chemical Vapor Deposition Growth of αâ€In 2 O 3 Films Using Indium Oxide Powder as Source Precursor. Physica Status Solidi (B): Basic Research, 0, , 2100414.	0.7	3

Kentaro Kaneko

#	Article	IF	CITATIONS
55	Study on corundum-structured p-type iridium oxide thin films and band alignment at iridium oxide /gallium oxide hetero-junction. , 2018, , .		2
56	Fabrication of Corundum-Structured α-(InFe)2O3 Alloy Films on Sapphire Substrates by Inserting α-Fe2O3 Buffer Layer. Materials Research Society Symposia Proceedings, 2013, 1494, 221-225.	0.1	1
57	Characterization of band offset in α-(Al <inf>x</inf> Ga <inf>1-x</inf>) <inf>2</inf> O <inf>3</inf> / α-Ga <inf>2</inf> O <inf>3</inf> heterostructures. , 2016, , .		1
58	Corundum-strructured α-Ga <inf>2</inf> O <inf>3</inf> -based alloys for future power device applications. , 2017, , .		1
59	Synthesis of Metastable or Non-Equilibrium-Phased Oxides by the Mist CVD method. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 369-373.	0.1	1
60	VUV emission properties of rocksaltâ€structured MgZnO microcrystals prepared on quartz glass substrates. Physica Status Solidi (B): Basic Research, 0, , 2100354.	0.7	1
61	Crystal Growth and Device Applications of Corundum-Structured Gallium Oxide. Zairyo/Journal of the Society of Materials Science, Japan, 2016, 65, 631-637.	0.1	Ο
62	Fabrication of α-Ga <inf>2</inf> O <inf>3</inf> thin films using properties. , 2016, , .		0
63	Research of Semiconductor Materials That Emit in the Vacuum Ultraviolet Region of 200 nm or Less. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 727-731.	0.1	Ο
64	Ga ₂ O ₃ Crystal for Power Device. Journal of the Institute of Electrical Engineers of Japan, 2017, 137, 693-696.	0.0	0
65	An Nightmare of the Day before Christmas Eve. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 731-732.	0.1	Ο
66	Synthesis of Metastable or Non-Equilibrium Phased Oxides and Their Physical Properties. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 733-738.	0.1	0
67	Synthesis of High-Quality α-Ga ₂ O ₃ thin films on Sapphire Substrates with Introduction of Buffer Layers. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 707-711	0.1	0