List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7784458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell, 2017, 168, 473-486.e15.	28.9	397
2	Boar spermatozoa in the oviduct. Theriogenology, 2005, 63, 514-535.	2.1	184
3	Modulation of The Oviductal Environment by Gametes. Journal of Proteome Research, 2007, 6, 4656-4666.	3.7	132
4	Survival and Fertility of Boar Spermatozoa After Freezeâ€Thawing in Extender Supplemented With Butylated Hydroxytoluene. Journal of Andrology, 2004, 25, 397-405.	2.0	128
5	Advances in Swine <i>In Vitro</i> Embryo Production Technologies. Reproduction in Domestic Animals, 2010, 45, 40-48.	1.4	121
6	Factors influencing boar sperm cryosurvival1. Journal of Animal Science, 2006, 84, 2692-2699.	0.5	120
7	Effects of Centrifugation Before Freezing on Boar Sperm Cryosurvival. Journal of Andrology, 2004, 25, 389-396.	2.0	116
8	Influence of Porcine Spermadhesins on the Susceptibility of Boar Spermatozoa to High Dilution1. Biology of Reproduction, 2003, 69, 640-646.	2.7	106
9	Fertility of weaned sows after deep intrauterine insemination with a reduced number of frozen-thawed spermatozoa. Theriogenology, 2003, 60, 77-87.	2.1	103
10	The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics, 2014, 15, 293.	2.8	101
11	Cryosurvival and In Vitro Fertilizing Capacity Postthaw Is Improved When Boar Spermatozoa Are Frozen in the Presence of Seminal Plasma From Good Freezer Boars. Journal of Andrology, 2007, 28, 689-697.	2.0	94
12	Seminal Plasma Proteins as Modulators of the Sperm Function and Their Application in Sperm Biotechnologies. Reproduction in Domestic Animals, 2012, 47, 12-21.	1.4	93
13	Kinematic Changes During the Cryopreservation of Boar Spermatozoa. Journal of Andrology, 2005, 26, 610-618.	2.0	92
14	Minimum number of spermatozoa required for normal fertility after deep intrauterine insemination in non-sedated sows. Reproduction, 2002, 123, 163-170.	2.6	90
15	Hypoosmotic swelling of boar spermatozoa compared to other methods for analysing the sperm membrane. Theriogenology, 1997, 47, 913-922.	2.1	86
16	Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test. Reproduction, Fertility and Development, 1998, 10, 479.	0.4	86
17	Successful non-surgical deep intrauterine insemination with small numbers of spermatozoa in sows. Reproduction, 2001, 122, 289-296.	2.6	86
18	Viability and fertility of rabbit spermatozoa diluted in Tris-buffer extenders and stored at 15°C. Animal Reproduction Science, 2000, 64, 103-112.	1.5	82

#	Article	IF	CITATIONS
19	Effects of holding time during cooling and of type of package on plasma membrane integrity, motility and in vitro oocyte penetration ability of frozen-thawed boar spermatozoa. Theriogenology, 2001, 55, 1593-1605.	2.1	77
20	Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. Journal of Andrology, 2005, 26, 15-24.	2.0	77
21	Adjustments on the cryopreservation conditions reduce the incidence of boar ejaculates with poor sperm freezability. Theriogenology, 2007, 67, 1436-1445.	2.1	76
22	Characterization of the porcine seminal plasma proteome comparing ejaculate portions. Journal of Proteomics, 2016, 142, 15-23.	2.4	74
23	Birth of piglets after deep intrauterine insemination with flow cytometrically sorted boar spermatozoa. Theriogenology, 2003, 59, 1605-1614.	2.1	71
24	Early Developing Pig Embryos Mediate Their Own Environment in the Maternal Tract. PLoS ONE, 2012, 7, e33625.	2.5	70
25	Challenges in Pig Artificial Insemination. Reproduction in Domestic Animals, 2006, 41, 43-53.	1.4	66
26	Vitrification of porcine embryos at various developmental stages using different ultra-rapid cooling procedures. Theriogenology, 2004, 62, 353-361.	2.1	65
27	Successful nonsurgical deep uterine embryo transfer in pigs. Theriogenology, 2004, 61, 137-146.	2.1	65
28	Differences in SCSA outcome among boars with different sperm freezability. Journal of Developmental and Physical Disabilities, 2006, 29, 583-591.	3.6	65
29	Boar Differences In Artificial Insemination Outcomes: Can They Be Minimized?. Reproduction in Domestic Animals, 2015, 50, 48-55.	1.4	62
30	Comparative Effects of Autologous and Homologous Seminal Plasma on the Viability of Largely Extended Boar Spermatozoa. Reproduction in Domestic Animals, 2004, 39, 370-375.	1.4	59
31	Will AI in pigs become more efficient?. Theriogenology, 2016, 86, 187-193.	2.1	59
32	Extracellular vesicles isolated from porcine seminal plasma exhibit different tetraspanin expression profiles. Scientific Reports, 2019, 9, 11584.	3.3	59
33	In vitro development following one-step dilution of OPS-vitrified porcine blastocysts. Theriogenology, 2004, 62, 1144-1152.	2.1	58
34	Improving the efficiency of sperm technologies in pigs: the value of deep intrauterine insemination. Theriogenology, 2005, 63, 536-547.	2.1	56
35	Piglets born after non-surgical deep intrauterine transfer of vitrified blastocysts in gilts. Animal Reproduction Science, 2005, 85, 275-286.	1.5	56
36	High total antioxidant capacity of the porcine seminal plasma (SP-TAC) relates to sperm survival and fertility. Scientific Reports, 2015, 5, 18538.	3.3	56

#	Article	IF	CITATIONS
37	Seminal Plasma: Relevant for Fertility?. International Journal of Molecular Sciences, 2021, 22, 4368.	4.1	56
38	Spermadhesin PSP-I/PSP-II heterodimer induces migration of polymorphonuclear neutrophils into the uterine cavity of the sow. Journal of Reproductive Immunology, 2010, 84, 57-65.	1.9	55
39	PSPâ€I/PSPâ€II spermadhesin exert a decapacitation effect on highly extended boar spermatozoa. Journal of Developmental and Physical Disabilities, 2009, 32, 505-513.	3.6	54
40	Approaches Towards Efficient Use of Boar Semen in the Pig Industry. Reproduction in Domestic Animals, 2011, 46, 79-83.	1.4	54
41	Seminal plasma antioxidants are directly involved in boar sperm cryotolerance. Theriogenology, 2018, 107, 27-35.	2.1	54
42	Major proteins of boar seminal plasma as a tool for biotechnological preservation of spermatozoa. Theriogenology, 2008, 70, 1352-1355.	2.1	52
43	Evaluation of boar spermatozoa penetrating capacity using pig oocytes at the germinal vesicle stage. Theriogenology, 1993, 40, 547-557.	2.1	50
44	New In-Depth Analytical Approach of the Porcine Seminal Plasma Proteome Reveals Potential Fertility Biomarkers. Journal of Proteome Research, 2018, 17, 1065-1076.	3.7	50
45	Hoechst 33342 stain and u.v. laser exposure do not induce genotoxic effects in flow-sorted boar spermatozoa. Reproduction, 2004, 128, 615-621.	2.6	49
46	Boar sperm cryosurvival is better after exposure to seminal plasma from selected fractions than to those from entire ejaculate. Cryobiology, 2014, 69, 203-210.	0.7	49
47	Characteristics and seasonal variations in the semen of Murciano-Granadina goats in the Mediterranean area. Animal Reproduction Science, 1992, 29, 255-262.	1.5	48
48	Effect of the volume of medium and number of oocytes during in vitro fertilization on embryo development in pigs. Theriogenology, 2003, 60, 767-776.	2.1	46
49	Sex-sorting sperm by flow cytometry in pigs: Issues and perspectives. Theriogenology, 2009, 71, 80-88.	2.1	46
50	Improvement of boar sperm cryosurvival by using single-layer colloid centrifugation prior freezing. Theriogenology, 2012, 78, 1117-1125.	2.1	46
51	Nonsurgical deep uterine transfer of vitrified, in vivo-derived, porcine embryos is as effective as the default surgical approach. Scientific Reports, 2015, 5, 10587.	3.3	46
52	Does multivariate analysis of post-thaw sperm characteristics accurately estimate in vitro fertility of boar individual ejaculates?. Theriogenology, 2005, 64, 305-316.	2.1	45
53	Retained Functional Integrity of Bull Spermatozoa after Double Freezing and Thawing Using PureSperm® Density Gradient Centrifugation. Reproduction in Domestic Animals, 2007, 42, 489-494.	1.4	45
54	Successful Non-Surgical Deep Uterine Transfer of Porcine Morulae after 24 Hour Culture in a Chemically Defined Medium. PLoS ONE, 2014, 9, e104696.	2.5	45

#	Article	IF	CITATIONS
55	Immunolocalization and Possible Functional Role of PSP-I/PSP-II Heterodimer in Highly Extended Boar Spermatozoa. Journal of Andrology, 2006, 27, 766-773.	2.0	44
56	Suitability and effectiveness of single layer centrifugation using Androcoll-P in the cryopreservation protocol for boar spermatozoa. Animal Reproduction Science, 2013, 140, 173-179.	1.5	44
57	Relationship between antral follicle size, oocyte diameters and nuclear maturation of immature oocytes in pigs. Theriogenology, 2002, 58, 871-885.	2.1	43
58	Dissecting the Protective Effect of the Seminal Plasma Spermadhesin PSP-I/PSP-II on Boar Sperm Functionality. Journal of Andrology, 2006, 27, 434-443.	2.0	43
59	Dissimilarities in sows' ovarian status at the insemination time could explain differences in fertility between farms when frozen-thawed semen is used. Theriogenology, 2006, 65, 669-680.	2.1	43
60	Factors affecting the success rate of porcine embryo vitrification by the Open Pulled Straw method. Animal Reproduction Science, 2008, 108, 334-344.	1.5	43
61	Detrimental Effects of Non-Functional Spermatozoa on the Freezability of Functional Spermatozoa from Boar Ejaculate. PLoS ONE, 2012, 7, e36550.	2.5	42
62	Treating boar sperm with cholesterol-loaded cyclodextrins widens the sperm osmotic tolerance limits and enhances the in vitro sperm fertilising ability. Animal Reproduction Science, 2011, 129, 209-220.	1.5	41
63	Boar semen variability and its effects on IVF efficiency. Theriogenology, 2008, 70, 1260-1268.	2.1	40
64	Heat-shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity. Reproduction, 2014, 147, 719-732.	2.6	40
65	The Proteome of Pig Spermatozoa Is Remodeled During Ejaculation. Molecular and Cellular Proteomics, 2019, 18, 41-50.	3.8	40
66	Effect of short periods of sperm–oocyte coincubation during in vitro fertilization on embryo development in pigs. Theriogenology, 2004, 62, 544-552.	2.1	39
67	Effect of the cryoprotectant concentration on the in vitro embryo development and cell proliferation of OPS-vitrified porcine blastocysts. Cryobiology, 2008, 56, 189-194.	0.7	39
68	An update on Reproductive Technologies with Potential Short-Term Application in Pig Production. Reproduction in Domestic Animals, 2005, 40, 300-309.	1.4	38
69	Dead spermatozoa in raw semenÂsamples impair inÂvitro fertilization outcomes of frozen-thawed spermatozoa. Fertility and Sterility, 2013, 100, 875-881.	1.0	38
70	Improving the fertilizing ability of sex sorted boar spermatozoa. Theriogenology, 2007, 68, 771-778.	2.1	37
71	Improving the Efficiency of Insemination with Sexâ€sorted Spermatozoa. Reproduction in Domestic Animals, 2008, 43, 1-8.	1.4	37
72	New developments in low-dose insemination technology. Theriogenology, 2008, 70, 1216-1224.	2.1	37

#	Article	IF	CITATIONS
73	Recent advances toward the practical application of embryo transfer in pigs. Theriogenology, 2016, 85, 152-161.	2.1	37
74	Evaluation of l-glutamine for cryopreservation of boar spermatozoa. Animal Reproduction Science, 2009, 115, 149-157.	1.5	36
75	Oocyte Penetration by Fresh or Stored Diluted Boar Spermatozoa before and after in Vitro Capacitation Treatments1. Biology of Reproduction, 1996, 55, 134-140.	2.7	35
76	Boar semen proteomics and sperm preservation. Theriogenology, 2019, 137, 23-29.	2.1	35
77	Glutathione Peroxidase 5 Is Expressed by the Entire Pig Male Genital Tract and Once in the Seminal Plasma Contributes to Sperm Survival and In Vivo Fertility. PLoS ONE, 2016, 11, e0162958.	2.5	35
78	In vitro fertilization of pig oocytes after different coincubation intervals. Theriogenology, 1993, 39, 1201-1208.	2.1	34
79	Sperm concentration influences fertilization and male pronuclear formation in vitro in pigs. Theriogenology, 1993, 40, 539-546.	2.1	34
80	Differences in the ability of spermatozoa from individual boar ejaculates to withstand different semen-processing techniques. Animal Reproduction Science, 2012, 132, 66-73.	1.5	34
81	Does Seminal Plasma PSPâ€I/PSPâ€II Spermadhesin Modulate the Ability of Boar Spermatozoa to Penetrate Homologous Oocytes In Vitro?. Journal of Andrology, 2004, 25, 1004-1012.	2.0	33
82	The activity of paraoxonase type 1 (<scp>PON</scp> â€1) in boar seminal plasma and its relationship with sperm quality, functionality, and in vivo fertility. Andrology, 2015, 3, 315-320.	3.5	33
83	Adjustments in IVF system for individual boars: Value of additives and time of sperm–oocyte co-incubation. Theriogenology, 2005, 64, 1783-1796.	2.1	32
84	Acrosome reaction of boar spermatozoa in homologous in vitro fertilization. Molecular Reproduction and Development, 1993, 36, 84-88.	2.0	31
85	Motility Characteristics and Fertilizing Capacity of Boar Spermatozoa Stained with Hoechst 33342. Reproduction in Domestic Animals, 2002, 37, 369-374.	1.4	31
86	Incidence of Unilateral Fertilizations after Low Dose Deep Intrauterine Insemination in Spontaneously Ovulating Sows under Field Conditions. Reproduction in Domestic Animals, 2006, 41, 41-47.	1.4	31
87	The effectiveness of the stereomicroscopic evaluation of embryo quality in vitrified–warmed porcine blastocysts: An ultrastructural and cell death study. Theriogenology, 2007, 67, 970-982.	2.1	31
88	In vitro maturation of porcine oocytes with retinoids improves embryonic development. Reproduction, Fertility and Development, 2008, 20, 483.	0.4	31
89	In vitro penetration assay of boar sperm fertility: Effect of various factors on the penetrability of immature pig oocytes. Theriogenology, 1996, 46, 503-513.	2.1	30
90	Distinct Effects of Boar Seminal Plasma Fractions Exhibiting Different Protein Profiles on the Functionality of Highly Diluted Boar Spermatozoa. Reproduction in Domestic Animals, 2009, 44, 200-205.	1.4	30

#	Article	IF	CITATIONS
91	Superfine open pulled straws vitrification of porcine blastocysts does not require pretreatment with cytochalasin B and/or centrifugation. Reproduction, Fertility and Development, 2010, 22, 808.	0.4	30
92	Boar semen can tolerate rapid cooling rates prior to freezing. Reproduction, Fertility and Development, 2011, 23, 681.	0.4	30
93	Season of ejaculate collection influences the freezability of boar spermatozoa. Cryobiology, 2013, 67, 299-304.	0.7	30
94	Influence of seminal plasma PSP-I/PSP-II spermadhesin on pig gamete interaction. Zygote, 2005, 13, 11-16.	1.1	29
95	Brief coincubation of gametes in porcine in vitro fertilization: Role of sperm:oocyte ratio and post-coincubation medium. Theriogenology, 2007, 67, 620-626.	2.1	29
96	The nuclear DNA longevity in cryopreserved boar spermatozoa assessed using the Sperm-Sus-Halomax. Theriogenology, 2013, 79, 1294-1300.	2.1	29
97	The Seminal Plasma of the Boar is Rich in Cytokines, with Significant Individual and Intra-Ejaculate Variation. American Journal of Reproductive Immunology, 2015, 74, 523-532.	1.2	29
98	Achievements and future perspectives of embryo transfer technology in pigs. Reproduction in Domestic Animals, 2019, 54, 4-13.	1.4	29
99	Cryopreservation Differentially Alters the Proteome of Epididymal and Ejaculated Pig Spermatozoa. International Journal of Molecular Sciences, 2019, 20, 1791.	4.1	29
100	Transfer of vitrified blastocysts from one or two superovulated Large White Hyperprolific donors to Meishan recipients: reproductive parameters at Day 30 of pregnancy. Theriogenology, 2004, 61, 843-850.	2.1	28
101	Influence of storage time on functional capacity of flow cytometrically sex-sorted boar spermatozoa. Theriogenology, 2005, 64, 86-98.	2.1	28
102	Effects of two combinations of cryoprotectants on the inÂvitro developmental capacity of vitrified immature porcine oocytes. Theriogenology, 2015, 84, 545-552.	2.1	28
103	Non-viable sperm in the ejaculate: Lethal escorts for contemporary viable sperm. Animal Reproduction Science, 2016, 169, 24-31.	1.5	28
104	Vitrification and warming of in vivo–derived porcine embryos in a chemically defined medium. Theriogenology, 2010, 73, 300-308.	2.1	27
105	Effective vitrification and warming of porcine embryos using a pH-stable, chemically defined medium. Scientific Reports, 2016, 6, 33915.	3.3	27
106	Fluorescence in situ hybridization in diluted and flow cytometrically sorted boar spermatozoa using specific DNA direct probes labelled by nick translation. Reproduction, 2003, 126, 317-325.	2.6	26
107	Influence of sperm:oocyte ratio during in vitro fertilization of in vitro matured cumulus-intact pig oocytes on fertilization parameters and embryo development. Theriogenology, 2004, 61, 551-560.	2.1	26
108	Relevance of ovarian follicular development to the seasonal impairment of fertility in weaned sows. Veterinary Journal, 2014, 199, 382-386.	1.7	25

#	Article	IF	CITATIONS
109	The effects of superovulation of donor sows on ovarian response and embryo development after nonsurgical deep-uterine embryo transfer. Theriogenology, 2014, 81, 832-839.	2.1	25
110	Seminal Plasma Modifies the Transcriptional Pattern of the Endometrium and Advances Embryo Development in Pigs. Frontiers in Veterinary Science, 2019, 6, 465.	2.2	24
111	Viability and fertility of unwashed Murciano-Granadina goat spermatozoa diluted in Tris-egg yolk extender and stored at 5 °C. Small Ruminant Research, 1997, 25, 147-153.	1.2	23
112	In vitro postwarming viability of vitrified porcine embryos: Effect of cryostorage length. Theriogenology, 2010, 74, 486-490.	2.1	23
113	The overlaying oil type influences in vitro embryo production: differences in composition and compound transfer into incubation medium between oils. Scientific Reports, 2017, 7, 10505.	3.3	23
114	Seasonal variations of semen quality in male goats: Study of sperm abnormalities. Theriogenology, 1992, 38, 115-125.	2.1	22
115	Lowâ€Dose Insemination in Pigs: Problems and Possibilities. Reproduction in Domestic Animals, 2008, 43, 347-354.	1.4	22
116	Seminal Plasma Induces Overexpression of Genes Associated with Embryo Development and Implantation in Day-6 Porcine Blastocysts. International Journal of Molecular Sciences, 2020, 21, 3662.	4.1	22
117	Cryo-scanning electron microscopy (Cryo-SEM) of semen frozen in medium-straws from good and sub-standard freezer Al-boars. Cryobiology, 2007, 54, 63-70.	0.7	21
118	Non-surgical deep intrauterine transfer of superfine open pulled straw (SOPS)-vitrified porcine embryos: Evaluation of critical steps of the procedure. Theriogenology, 2012, 78, 1339-1349.	2.1	21
119	Generation of human organs in pigs via interspecies blastocyst complementation. Reproduction in Domestic Animals, 2016, 51, 18-24.	1.4	21
120	Exogenous ascorbic acid enhances vitrification survival of porcine inÂvitro-developed blastocysts but fails to improve the inÂvitro embryo production outcomes. Theriogenology, 2018, 113, 113-119.	2.1	21
121	Supplementation with exogenous coenzyme Q10 to media for in vitro maturation and embryo culture fails to promote the developmental competence of porcine embryos. Reproduction in Domestic Animals, 2019, 54, 72-77.	1.4	21
122	Flow Cytometry Identification of X- and Y-Chromosome-Bearing Goat Spermatozoa. Reproduction in Domestic Animals, 2004, 39, 58-60.	1.4	20
123	Effects of Hoechst 33342 staining and ultraviolet irradiation on mitochondrial distribution and DNA copy number in porcine oocytes and preimplantation embryos. Molecular Reproduction and Development, 2012, 79, 651-663.	2.0	20
124	Measurement of activity and concentration of paraoxonase 1 (PONâ€1) in seminal plasma and identification of PONâ€2 in the sperm of boar ejaculates. Molecular Reproduction and Development, 2015, 82, 58-65.	2.0	20
125	Seminal Plasma Cytokines Are Predictive of the Outcome of Boar Sperm Preservation. Frontiers in Veterinary Science, 2019, 6, 436.	2.2	20
126	Environment and medium volume influence <i>in vitro</i> fertilisation of pig oocytes. Zygote, 1993, 1, 209-213.	1.1	19

#	Article	IF	CITATIONS
127	Vitrification of in vitro cultured porcine two-to-four cell embryos. Theriogenology, 2007, 68, 258-264.	2.1	19
128	Capability of frozen–thawed boar spermatozoa to sustain pre-implantational embryo development. Animal Reproduction Science, 2010, 121, 145-151.	1.5	19
129	Is boar sperm freezability more intrinsically linked to spermatozoa than to the surrounding seminal plasma?. Animal Reproduction Science, 2018, 195, 30-37.	1.5	19
130	High pre-freezing sperm dilution improves monospermy without affecting the penetration rate in porcine IVF. Theriogenology, 2019, 131, 162-168.	2.1	19
131	Influence of constant long days on ejaculate parameters of rabbits reared under natural environment conditions of Mediterranean area. Livestock Science, 2005, 94, 169-177.	1.2	18
132	An Earlier Uterine Environment Favors the <i>In Vivo</i> Development of Fresh Pig Morulae and Blastocysts Transferred by a Nonsurgical Deep-uterine Method. Journal of Reproduction and Development, 2014, 60, 371-376.	1.4	18
133	Effects of Vitrification on the Blastocyst Gene Expression Profile in a Porcine Model. International Journal of Molecular Sciences, 2021, 22, 1222.	4.1	18
134	Effects of Complement Component 3 Derivatives on Pig Oocyte Maturation, Fertilization and Early Embryo Development <i>In Vitro</i> . Reproduction in Domestic Animals, 2011, 46, 1017-1021.	1.4	17
135	Levels of activity of superoxide dismutase in seminal plasma do not predict fertility of pig Al-semen doses. Theriogenology, 2019, 140, 18-24.	2.1	17
136	Effect of astaxanthin in extenders on sperm quality and functional variables of frozen-thawed boar semen. Animal Reproduction Science, 2020, 218, 106478.	1.5	17
137	Forskolin improves the cryosurvival of in vivo-derived porcine embryos at very early stages using two vitrification methods. Cryobiology, 2013, 66, 144-150.	0.7	16
138	Design, development, and application of a non-surgical deep uterine embryo transfer technique in pigs. Animal Frontiers, 2013, 3, 40-47.	1.7	16
139	Successful laparoscopic insemination with a very low number of flow cytometrically sorted boar sperm in field conditions. Theriogenology, 2014, 81, 315-320.	2.1	16
140	The use of mineral oil during inÂvitro maturation, fertilization, and embryo culture does not impair the developmental competence of pig oocytes. Theriogenology, 2015, 83, 693-702.	2.1	16
141	Peroxidized mineral oil increases the oxidant status of culture media and inhibits inÂvitro porcine embryo development. Theriogenology, 2017, 103, 17-23.	2.1	16
142	Proteomics in fresh and preserved pig semen: Recent achievements and future challenges. Theriogenology, 2020, 150, 41-47.	2.1	16
143	Use of real-time ultrasonic scanning for the detection of reproductive failure in pig herds. Animal Reproduction Science, 1992, 29, 53-59.	1.5	15
144	Pentoxifylline added to freezing or post-thaw extenders does not improve the survival or in vitro fertilising capacity of boar spermatozoa. Reproduction, 2010, 139, 557-564.	2.6	15

#	Article	IF	CITATIONS
145	Effect of MEM vitamins and forskolin on embryo development and vitrification tolerance of in vitro-produced pig embryos. Animal Reproduction Science, 2013, 136, 296-302.	1.5	15
146	The proteome of frozen-thawed pig spermatozoa is dependent on the ejaculate fraction source. Scientific Reports, 2019, 9, 705.	3.3	15
147	Use of triple stain technique for simultaneous assessment of vitality and acrosomal status in boar spermatozoa. Theriogenology, 1992, 38, 843-852.	2.1	14
148	Effects of ultrashort gamete co-incubation time on porcine in vitro fertilization. Animal Reproduction Science, 2008, 106, 393-401.	1.5	14
149	Simple storage (CO2-free) of porcine morulae for up to three days maintains the inÂvitro viability and developmental competence. Theriogenology, 2018, 108, 229-238.	2.1	14
150	Lectin histochemistry during in vitro capacitation and acrosome reaction in boar spermatozoa: new lectins for evaluating acrosomal status of boar spermatozoa. Acta Histochemica, 1996, 98, 93-100.	1.8	13
151	Influence of follicle size on the penetrability of immature pig oocytes for homologous in vitro penetration assay. Theriogenology, 2003, 60, 659-667.	2.1	13
152	The Recipients' Parity Does Not Influence Their Reproductive Performance Following Nonâ€ S urgical Deep Uterine Porcine Embryo Transfer. Reproduction in Domestic Animals, 2016, 51, 123-129.	1.4	13
153	Post-thaw boar sperm motility is affected by prolonged storage of sperm in liquid nitrogen. A retrospective study. Cryobiology, 2018, 80, 119-125.	0.7	13
154	Localization and expression of spermadhesin PSPâ€I/PSPâ€II subunits in the reproductive organs of the boar. Journal of Developmental and Physical Disabilities, 2008, 31, 408-417.	3.6	12
155	Effects of Hoechst 33342 staining and ultraviolet irradiation on the developmental competence of in vitro-matured porcine oocytes. Theriogenology, 2011, 76, 1667-1675.	2.1	12
156	The inÂvitro and inÂvivo developmental capacity of selected porcine monospermic zygotes. Theriogenology, 2013, 79, 392-398.	2.1	12
157	Handling of boar spermatozoa during and after flow cytometric sex-sorting process to improve their inÂvitro fertilizing ability. Theriogenology, 2013, 80, 350-356.	2.1	12
158	Egg Yolk and Glycerol Requirements for Freezing Boar Spermatozoa Treated with Methyl β-Cyclodextrin or Cholesterol-loaded Cyclodextrin. Journal of Reproduction and Development, 2014, 60, 143-149.	1.4	12
159	Surgical embryo collection but not nonsurgical embryo transfer compromises postintervention prolificacy in sows. Theriogenology, 2017, 87, 316-320.	2.1	12
160	Influence of season on testicle size and libido in male goats from the Mediterranean area. Animal Science, 1991, 52, 317-321.	1.3	11
161	Use of frozen-thawed semen aggravates the summer-autumn infertility of artificially inseminated weaned sows in the Mediterranean region1. Journal of Animal Science, 2009, 87, 3967-3975.	0.5	11
162	Validation of trans-rectal ultrasonography for counting preovulatory follicles in weaned sows. Animal Reproduction Science, 2009, 113, 137-142.	1.5	11

#	Article	IF	CITATIONS
163	Developmental competence of porcine genomeâ€edited zygotes. Molecular Reproduction and Development, 2017, 84, 814-821.	2.0	11
164	Effect of sex-sorting and cryopreservation on the post-thaw sperm quality of Iberian red deer spermatozoa. Theriogenology, 2017, 89, 206-213.	2.1	11
165	Altrenogest treatment before weaning improves litter size in sows. Reproduction in Domestic Animals, 2017, 52, 75-77.	1.4	11
166	Characterization of glycoside residues of porcine zona pellucida and ooplasm during follicular development and atresia. Molecular Reproduction and Development, 2008, 75, 1473-1483.	2.0	10
167	The Effects of Hoechst 33342 Staining and the Male Sample Donor on the Sorting Efficiency of Canine Spermatozoa. Reproduction in Domestic Animals, 2014, 49, 115-121.	1.4	10
168	Effects of Rapid Cooling Prior to Freezing on the Quality of Canine Cryopreserved Spermatozoa. Journal of Reproduction and Development, 2014, 60, 355-361.	1.4	10
169	<i>In Vitro</i> Fertilization (IVF) in Straws and a Short Gamete Coincubation Time Improves the Efficiency of Porcine IVF. Reproduction in Domestic Animals, 2008, 43, 747-752.	1.4	9
170	The Effect of Oxidative Stress on Thawed Bulkâ€Sorted Red Deer Sperm. Reproduction in Domestic Animals, 2016, 51, 407-414.	1.4	9
171	Active paraoxonase 1 is synthesised throughout the internal boar genital organs. Reproduction, 2017, 154, 237-243.	2.6	9
172	Boar seminal plasma: current insights on its potential role for assisted reproductive technologies in swine. Animal Reproduction, 2020, 17, e20200022.	1.0	9
173	Effects of lipid polarisation on survival of in vivo-derived porcine zygotes vitrified by the superfine open pulled-straw method. Reproduction, Fertility and Development, 2013, 25, 798.	0.4	8
174	Intra- and interboar variability in flow cytometric sperm sex sorting. Theriogenology, 2014, 82, 501-508.	2.1	8
175	Extensive dataset of boar seminal plasma proteome displaying putative reproductive functions of identified proteins. Data in Brief, 2016, 8, 1370-1373.	1.0	8
176	Prevention of hatching of porcine morulae and blastocysts by liquid storage at 20 °C. Scientific Reports, 2019, 9, 6219.	3.3	8
177	The physiological roles of the boar ejaculate. Bioscientifica Proceedings, 0, , .	1.0	8
178	Use of polarized light microscopy in porcine reproductive technologies. Theriogenology, 2011, 76, 669-677.	2.1	7
179	The Effect of Glycerol Concentrations on the Postâ€thaw <i>In Vitro</i> Characteristics of Cryopreserved Sexâ€sorted Boar Spermatozoa. Reproduction in Domestic Animals, 2012, 47, 965-974.	1.4	7
180	Seminal plasma affects sperm sex sorting in boars. Reproduction, Fertility and Development, 2016, 28, 556.	0.4	7

#	Article	IF	CITATIONS
181	Effects of meiotic inhibitors and gonadotrophins on porcine oocytes in vitro maturation, fertilization and development. Reproduction in Domestic Animals, 2017, 52, 873-880.	1.4	7
182	Profile and reproductive roles of seminal plasma melatonin of boar ejaculates used in artificial insemination programs1. Journal of Animal Science, 2017, 95, 1660-1668.	0.5	7
183	Exogenous Melatonin in the Culture Medium Does Not Affect the Development of In Vivo-Derived Pig Embryos but Substantially Improves the Quality of In Vitro-Produced Embryos. Antioxidants, 2022, 11, 1177.	5.1	7
184	Allogeneic Embryos Disregulate Leukemia Inhibitory Factor (LIF) and Its Receptor in the Porcine Endometrium During Implantation. Frontiers in Veterinary Science, 2020, 7, 611598.	2.2	6
185	Seasonal variation in fructose and citric acid in seminal plasma of Murciano-Granadina goats. Small Ruminant Research, 1993, 10, 219-226.	1.2	5
186	The Fertilizing Ability Assessment of Fresh and Stored Boar Semen. Reproduction in Domestic Animals, 1998, 33, 267-270.	1.4	5
187	Pre-pubertal Di(2-ethylhexyl) Phthalate (DEHP) Exposure of Young Boars Did Not Affect Sperm <i>In vitro</i> Penetration Capacity of Homologous Oocytes Post-puberty. Archives of Andrology, 2007, 53, 141-147.	1.0	5
188	Quality of chilled and cold-stored (5°C) canine spermatozoa submitted to different rapid cooling rates. Theriogenology, 2014, 82, 621-626.	2.1	5
189	Factors of importance when selecting sows as embryo donors. Animal, 2017, 11, 1330-1335.	3.3	5
190	92THE ADDITION OF SEMINAL PLASMA FROM INDIVIDUAL BOARS TO FREEZING EXTENDER CAN IMPROVE THE POST-THAW SPERM SURVIVAL. Reproduction, Fertility and Development, 2004, 16, 167.	0.4	5
191	Profile and reproductive roles of seminal plasma melatonin of boar ejaculates used in artificial insemination programs. Journal of Animal Science, 2017, 95, 1660.	0.5	5
192	A Short-Term Altrenogest Treatment Post-weaning Followed by Superovulation Reduces Pregnancy Rates and Embryo Production Efficiency in Multiparous Sows. Frontiers in Veterinary Science, 2021, 8, 771573.	2.2	5
193	Immunological uterine response to pig embryos before and during implantation. Reproduction in Domestic Animals, 2022, 57, 4-13.	1.4	5
194	Eventual re-vitrification or storage in liquid nitrogen vapor does not jeopardize the practical handling and transport of vitrified pig embryos. Theriogenology, 2018, 113, 229-236.	2.1	4
195	Blastocyst-Bearing Sows Display a Dominant Anti-Inflammatory Cytokine Profile Compared to Cyclic Sows at Day 6 of the Cycle. Animals, 2020, 10, 2028.	2.3	4
196	The Open Cryotop System Is Effective for the Simultaneous Vitrification of a Large Number of Porcine Embryos at Different Developmental Stages. Frontiers in Veterinary Science, 0, 9, .	2.2	4
197	Optimization of protocols for Iberian red deer (C ervus elaphus hispanicus) sperm handling before sex sorting by flow cytometry. Theriogenology, 2017, 92, 129-136.	2.1	3
198	Importance of oil overlay for production of porcine embryos in vitro. Reproduction in Domestic Animals, 2018, 53, 281-286.	1.4	3

#	Article	IF	CITATIONS
199	Porcine blastocyst viability and developmental potential is maintained for 48â€h of liquid storage at 25â€Â°C without CO2 gassing. Theriogenology, 2019, 135, 46-55.	2.1	3
200	Three-to-5-day weaning-to-estrus intervals do not affect neither efficiency of collection nor inÂvitro developmental ability of inÂvivo-derived pig zygotes. Theriogenology, 2020, 141, 48-53.	2.1	3
201	Intrauterine Infusion of TGF-β1 Prior to Insemination, Alike Seminal Plasma, Influences Endometrial Cytokine Responses but Does Not Impact the Timing of the Progression of Pre-Implantation Pig Embryo Development. Biology, 2021, 10, 159.	2.8	3
202	Vitrification Effects on the Transcriptome of in vivo-Derived Porcine Morulae. Frontiers in Veterinary Science, 2021, 8, 771996.	2.2	3
203	ARE WASHING and PREINCUBATION OF BOAR SPERMATOZOA REALLY NECESSARY TO PENETRATE PIG OOCYTES UNDER IN VITRO CONDITIONS?. Reproduction in Domestic Animals, 1996, 31, 317-320.	1.4	2
204	Exposure of in vitro-matured porcine oocytes to SYBR-14 and fluorescence impairs their developmental capacity. Animal Reproduction Science, 2012, 133, 101-108.	1.5	2
205	The melatonin concentration in boar seminal plasma: A predictive in vivo fertility marker?. Animal Reproduction Science, 2016, 169, 131.	1.5	2
206	Influence of insemination time on the fertility of sex sorted frozen-thawed Y-sperm in red deer. Theriogenology, 2018, 113, 171-175.	2.1	2
207	The cytokine platelet factor 4 successfully replaces bovine serum albumin for the inÂvitro culture of porcine embryos. Theriogenology, 2020, 148, 201-207.	2.1	2
208	Transcriptional Profiling of Porcine Blastocysts Produced In Vitro in a Chemically Defined Culture Medium. Animals, 2021, 11, 1414.	2.3	2
209	19 LOW-DOSE DEEP INTRAUTERINE INSEMINATION IN SOWS UNDER CONDITIONS: INCIDENCE OF UNILATERAL FERTILIZATIONS. Reproduction, Fertility and Development, 2005, 17, 159.	0.4	2
210	Neither frozen–thawed seminal plasma nor commercial transforming growth factorâ€Î²1 infused intraâ€utero before insemination improved fertility and prolificacy in sows. Reproduction in Domestic Animals, 2022, , .	1.4	2
211	OC12 Combination of IVF Strategies to Reduce Porcine Polyspermic Fertilization: Straw IVF System and Short Gamete Coincubation Time. Reproduction in Domestic Animals, 2006, 41, 105-105.	1.4	1
212	11 TIME OF INSEMINATION RELATIVE TO OVULATION EXPLAINS FERTILITY VARIATIONS OFFROZEN - THAWED SPERMATOZOA BETWEEN FARMS. Reproduction, Fertility and Development, 2005, 17, 155.	0.4	1
213	Equilibration time with cryoprotectants, but not melatonin supplementation during <i>in vitro</i> maturation, affects viability and metaphase plate morphology of vitrified porcine mature oocytes. Reproduction in Domestic Animals, 2022, , .	1.4	1
214	Immunohistochemical localization of paraoxonase type 1 in the boar genital tract. Animal Reproduction Science, 2016, 169, 117.	1.5	0
215	Seminal plasma oxidative stress biomarkers do not predict boar sperm freezability. Cryobiology, 2018, 85, 184.	0.7	0
216	Cryopreservation modifies the protein profile of boar spermatozoa. Cryobiology, 2018, 85, 184.	0.7	0

#	Article	IF	CITATIONS
217	Current progress in non-surgical embryo transfer with fresh and vitrified/warmed pig embryos. Bioscientifica Proceedings, 0, , .	1.0	Ο
218	Single layer centrifugation with androcoll-P prior to freezing enhances the in vitro fertilizing ability of frozen-thawed boar spermatozoa. Bioscientifica Proceedings, 0, , .	1.0	0
219	Strategies to improve the fertility of frozen-thawed boar semen for artificial insemination. Bioscientifica Proceedings, 0, , .	1.0	Ο
220	Optimal characteristics of spermatozoa for semen technologies in pigs. Bioscientifica Proceedings, 0, ,	1.0	0