
Vicente Larraga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7784341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protection in dogs against visceral leishmaniasis caused by Leishmania infantum is achieved by immunization with a heterologous prime-boost regime using DNA and vaccinia recombinant vectors expressing LACK Vaccine, 2003, 21, 2474-2484.	3.8	118
2	A heterologous prime–boost regime using DNA and recombinant vaccinia virus expressing the Leishmania infantum P36/LACK antigen protects BALB/c mice from cutaneous leishmaniasis. Vaccine, 2002, 20, 1226-1231.	3.8	78
3	Transcriptomics throughout the life cycle of Leishmania infantum: High down-regulation rate in the amastigote stage. International Journal for Parasitology, 2010, 40, 1497-1516.	3.1	77
4	Intranasal Vaccination against Cutaneous Leishmaniasis with a Particulated Leishmanial Antigen or DNA Encoding LACK. Infection and Immunity, 2004, 72, 4521-4527.	2.2	63
5	Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum. BMC Genomics, 2010, 11, 31.	2.8	55
6	Molecular cloning, cell localization and binding affinity to DNA replication proteins of the p36/LACK protective antigen from Leishmania infantum. FEBS Journal, 2001, 259, 909-917.	0.2	50
7	Genome-wide analysis reveals increased levels of transcripts related with infectivity in peanut lectin non-agglutinated promastigotes of Leishmania infantum. Genomics, 2009, 93, 551-564.	2.9	50
8	Intranasal delivery of naked DNA encoding the LACK antigen leads to protective immunity against visceral leishmaniasis in mice. Vaccine, 2007, 25, 2168-2172.	3.8	37
9	Proteome Profiling of <i>Leishmania Infantum</i> Promastigotes. Journal of Eukaryotic Microbiology, 2011, 58, 352-358.	1.7	32
10	Protective immune response against cutaneous leishmaniasis by prime/booster immunization regimens with vaccinia virus recombinants expressing Leishmania infantum p36/LACK and IL-12 in combination with purified p36. Microbes and Infection, 2001, 3, 701-711.	1.9	29
11	Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 347-354.	3.4	29
12	An Insight into the Proteome of Crithidia fasciculata Choanomastigotes as a Comparative Approach to Axenic Growth, Peanut Lectin Agglutination and Differentiation of Leishmania spp. Promastigotes. PLoS ONE, 2014, 9, e113837.	2.5	28
13	Stage-specific differential gene expression in Leishmania infantum: from the foregut of Phlebotomus perniciosus to the human phagocyte. BMC Genomics, 2014, 15, 849.	2.8	27
14	Cloning, functional analysis and post-transcriptional regulation of a type II DNA topoisomerase from Leishmania infantum. A new potential target for anti-parasite drugs. Nucleic Acids Research, 2003, 31, 4917-4928.	14.5	26
15	Research Priorities for Neglected Infectious Diseases in Latin America and the Caribbean Region. PLoS Neglected Tropical Diseases, 2010, 4, e780.	3.0	23
16	Adjuvant-induced polyarthritis. synovial cell activation prior to polyarthritis onset. Arthritis and Rheumatism, 1988, 31, 769-775.	6.7	22
17	Cellular and Humoral Reactivity Pattern to the Mycobacterial Heat Shock Protein HSP65 in Adjuvant Arthritis Susceptible and Resistant Wistar Rats. Autoimmunity, 1991, 9, 1-5.	2.6	19
18	In vitro infectivity and differential gene expression of Leishmania infantum metacyclic promastigotes: negative selection with peanut agglutinin in culture versus isolation from the stomodeal valve of Phlebotomus perniciosus. BMC Genomics, 2016, 17, 375.	2.8	19

VICENTE LARRAGA

#	Article	IF	CITATIONS
19	Genome-wide gene expression profile induced by exposure to cadmium acetate in Leishmania infantum promastigotes. International Microbiology, 2011, 14, 1-11.	2.4	18
20	Functional genomics in sand fly–derived Leishmania promastigotes. PLoS Neglected Tropical Diseases, 2019, 13, e0007288.	3.0	17
21	Influence of the Microenvironment in the Transcriptome of Leishmania infantum Promastigotes: Sand Fly versus Culture. PLoS Neglected Tropical Diseases, 2016, 10, e0004693.	3.0	17
22	Molecular organization in bacterial cell membranes. Biochimica Et Biophysica Acta - Biomembranes, 1972, 255, 960-973.	2.6	16
23	A putative <i>Leishmania</i> DNA polymerase theta protects the parasite against oxidative damage. Nucleic Acids Research, 2016, 44, 4855-4870.	14.5	16
24	Cloning, molecular analysis and differential cell localisation of the p36 RACK analogue antigen from the parasite protozoonCrithidia fasciculata1. FEBS Letters, 1999, 443, 375-380.	2.8	14
25	Cloning of the gp63 surface protease of Leishmania infantum. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1997, 1361, 92-102.	3.8	13
26	An intrinsic 5′-deoxyribose-5-phosphate lyase activity in DNA polymerase beta from Leishmania infantum supports a role in DNA repair. DNA Repair, 2006, 5, 89-101.	2.8	13
27	Increased Abundance of Proteins Involved in Resistance to Oxidative and Nitrosative Stress at the Last Stages of Growth and Development of Leishmania amazonensis Promastigotes Revealed by Proteome Analysis. PLoS ONE, 2016, 11, e0164344.	2.5	13
28	Isolation, partial characterization of the cytoplasmic membrane fraction of Streptomyces albus G and dd-carboxypeptidase localization. Archives of Microbiology, 1972, 81, 273-288.	2.2	12
29	Molecular Organization in Bacterial Cell Membranes. Specific Labelling and Topological Distribution of Glycoproteins and Proteins in Streptomyces albus Membranes. FEBS Journal, 1975, 54, 207-218.	0.2	12
30	The Challenge of Stability in High-Throughput Gene Expression Analysis: Comprehensive Selection and Evaluation of Reference Genes for BALB/c Mice Spleen Samples in the Leishmania infantum Infection Model. PLoS ONE, 2016, 11, e0163219.	2.5	11
31	Rationale for selection of developmentally regulated genes as vaccine candidates against Leishmania infantum infection. Vaccine, 2016, 34, 5474-5478.	3.8	10
32	The contribution of DNA microarray technology to gene expression profiling in Leishmania spp.: A retrospective view. Acta Tropica, 2018, 187, 129-139.	2.0	10
33	Identification of a Bacterial Energy-Transducing ATPase as a Metallo (Zn2+) Protein. Effect of Chelating Agents and Divalent Metal Ions on ATPase Activity. FEBS Journal, 1981, 119, 183-188.	0.2	9
34	Proteome profiling of the growth phases of Leishmania pifanoi promastigotes in axenic culture reveals differential abundance of immunostimulatory proteins. Acta Tropica, 2016, 158, 240-247.	2.0	8
35	IL12 p35 and p40 subunit genes administered as pPAL plasmid constructs do not improve protection of pPAL-LACK vaccine against canine leishmaniasis. PLoS ONE, 2019, 14, e0212136.	2.5	8
36	The antibiotic resistance-free mammalian expression plasmid vector pPAL for development of third generation vaccines. Plasmid, 2019, 101, 35-42.	1.4	8

VICENTE LARRAGA

#	Article	IF	CITATIONS
37	An Insight into the Constitutive Proteome Throughout Leishmania donovani Promastigote Growth and Differentiation. International Microbiology, 2019, 22, 143-154.	2.4	6
38	Biochemical analysis of synoviocytes from normal and arthritic rats. Evidence for an activated state associated with adjuvant polyarthritis. FEBS Journal, 1987, 162, 169-173.	0.2	5
39	Structures of the Leishmania infantum polymerase beta. DNA Repair, 2014, 18, 1-9.	2.8	5
40	Differential protein abundance in promastigotes of nitric oxideâ€sensitive and resistant <i>Leishmania chagasi</i> strains. Proteomics - Clinical Applications, 2016, 10, 1132-1146.	1.6	5
41	Serum Removal from Culture Induces Growth Arrest, Ploidy Alteration, Decrease in Infectivity and Differential Expression of Crucial Genes in Leishmania infantum Promastigotes. PLoS ONE, 2016, 11, e0150172.	2.5	5
42	Immunochemistry of membrane F1-Adenosine triphosphatase fromMicrococcus lysodeikticus. Role of the alpha subunit. Current Microbiology, 1981, 5, 363-366.	2.2	4
43	RNA-seq analysis reveals differences in transcript abundance between cultured and sand fly-derived Leishmania infantum promastigotes. Parasitology International, 2018, 67, 476-480.	1.3	4
44	Molecular organization in bacterial cell membranes III. Components of a "soluble―fraction obtained by n-butanol extraction of Streptomyces albus membranes. Biochimica Et Biophysica Acta - Biomembranes, 1974, 363, 9-25.	2.6	3
45	Topography of the subunits of Micrococcus lysodeikticus F1-ATPase. Molecular and Cellular Biochemistry, 1983, 56, 73-80.	3.1	3
46	Human neutrophil plasma membrane. Specific labelling, topological distribution of proteins and surface antigen detection. Molecular and Cellular Biochemistry, 1987, 77, 161-71.	3.1	3
47	New diarylsulfonamide inhibitors of Leishmania infantum amastigotes. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 16, 45-64.	3.4	3
48	Immunological behavior of two alloforms of ATPase fromMicrococcus lysodeikticus. Current Microbiology, 1980, 3, 237-241.	2.2	2
49	Arthritis transferred by cells derived from pre-inflammatory rat synovium. Journal of Autoimmunity, 1992, 5, 95-106.	6.5	2
50	Cloning and Structural Analysis of the Gene Encoding the Ribosomal Protein S6 from the ParasiteLeishmania infantum. Biochemical and Biophysical Research Communications, 1998, 248, 464-468.	2.1	2
51	Differential protein kinase C phosphorylation sites in the L17 ribosomal protein from Leishmania infantum. Parasitology Research, 2000, 86, 36-40.	1.6	1
52	Guide RNA genes up-regulated in Leishmania infantum metacyclic promastigotes. Acta Tropica, 2018, 187, 72-77.	2.0	1
53	Leishmania infantum UBC1 in Metacyclic Promastigotes from Phlebotomus perniciosus, a Vaccine Candidate for Zoonotic Visceral Leishmaniasis. Vaccines, 2022, 10, 231.	4.4	1
54	Stable Episomal Transfectant Leishmania infantum Promastigotes Over-Expressing the DEVH1 RNA Helicase Gene Down-Regulate Parasite Survival Genes. Pathogens, 2022, 11, 761.	2.8	1

#	Article	IF	CITATIONS
55	Evaluation of science policy in Spain. The training of human resources (1960–1991) and the development of Spanish biochemistry and molecular biology. Biochemical Education, 1993, 21, 141-142.	0.1	0
56	Inhibition of T-cell Proliferation by Rat Synoviocytes. Journal of Autoimmunity, 1993, 6, 557-569.	6.5	0