
Antonio C Roque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7784204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase transitions and self-organized criticality in networks of stochastic spiking neurons. Scientific Reports, 2016, 6, 35831.	1.6	65
2	Physics of psychophysics: Stevens and Weber-Fechner laws are transfer functions of excitable media. Physical Review E, 2002, 65, 060901.	0.8	60
3	A Computational Study on the Role of Gap Junctions and Rod Ih Conductance in the Enhancement of the Dynamic Range of the Retina. PLoS ONE, 2009, 4, e6970.	1.1	45
4	The non-equilibrium nature of culinary evolution. New Journal of Physics, 2008, 10, 073020.	1.2	35
5	Effects of Altered Excitation-Inhibition Balance on Decision Making in a Cortical Circuit Model. Journal of Neuroscience, 2022, 42, 1035-1053.	1.7	33
6	Conflict as a determinant of rat behavior in three types of elevated plus-maze. Behavioural Processes, 2003, 63, 87-93.	0.5	25
7	Signal compression in the sensory periphery. Neurocomputing, 2005, 65-66, 691-696.	3.5	25
8	Combined Role of Seizure-Induced Dendritic Morphology Alterations and Spine Loss in Newborn Granule Cells with Mossy Fiber Sprouting on the Hyperexcitability of a Computer Model of the Dentate Gyrus. PLoS Computational Biology, 2014, 10, e1003601.	1.5	25
9	A minimal model for excitable and bursting elements. Neurocomputing, 2001, 38-40, 255-261.	3.5	24
10	Mammography and Computerized Decision Systems. Annals of the New York Academy of Sciences, 2002, 980, 83-94.	1.8	23
11	A realistic model of rod photoreceptor for use in a retina network model. Neurocomputing, 2006, 69, 1020-1024.	3.5	23
12	Anxiety-like behavior in rats: a computational model. Neural Networks, 2000, 13, 21-29.	3.3	22
13	Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in Computational Neuroscience, 2014, 8, 103.	1.2	22
14	A Negative Slope Conductance of the Persistent Sodium Current Prolongs Subthreshold Depolarizations. Biophysical Journal, 2017, 113, 2207-2217.	0.2	22
15	Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise. Journal of Computational Neuroscience, 2018, 45, 1-28.	0.6	22
16	Dynamic Range of Vertebrate Retina Ganglion Cells: Importance of Active Dendrites and Coupling by Electrical Synapses. PLoS ONE, 2012, 7, e48517.	1.1	21
17	Intrinsic and synaptic properties of hippocampal CA1 pyramidal neurons of the Wistar Audiogenic Rat (WAR) strain, a genetic model of epilepsy. Scientific Reports, 2018, 8, 10412.	1.6	21
18	A computational model for exploratory activity of rats with different anxiety levels in elevated plus-maze. Journal of Neuroscience Methods, 2014, 236, 44-50.	1.3	20

#	Article	IF	CITATIONS
19	Modelling intracellular competition for calcium: kinetic and thermodynamic control of different molecular modes of signal decoding. Scientific Reports, 2016, 6, 23730.	1.6	19
20	Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks. Frontiers in Computational Neuroscience, 2018, 12, 9.	1.2	19
21	Self-sustained activity of low firing rate in balanced networks. Physica A: Statistical Mechanics and Its Applications, 2020, 537, 122671.	1.2	19
22	Stochastic Induction of Long-Term Potentiation and Long-Term Depression. Scientific Reports, 2016, 6, 30899.	1.6	18
23	A biophysical model of vertebrate olfactory epithelium and bulb exhibiting gap junction dependent odor-evoked spatiotemporal patterns of activity. BioSystems, 2004, 73, 25-43.	0.9	17
24	Mathematical methods to model rodent behavior in the elevated plus-maze. Journal of Neuroscience Methods, 2013, 220, 141-148.	1.3	16
25	The Periglomerular Cell of the Olfactory Bulb and its Role in Controlling Mitral Cell Spiking: A Computational Model. PLoS ONE, 2013, 8, e56148.	1.1	16
26	Characterization of the rat exploratory behavior in the elevated plus-maze with Markov chains. Journal of Neuroscience Methods, 2010, 193, 288-295.	1.3	15
27	Ih Equalizes Membrane Input Resistance in a Heterogeneous Population of Fusiform Neurons in the Dorsal Cochlear Nucleus. Frontiers in Cellular Neuroscience, 2016, 10, 249.	1.8	14
28	Mechanisms of Self-Sustained Oscillatory States in Hierarchical Modular Networks with Mixtures of Electrophysiological Cell Types. Frontiers in Computational Neuroscience, 2016, 10, 23.	1.2	14
29	Computational models of dentate gyrus with epilepsy-induced morphological alterations in granule cells. Epilepsy and Behavior, 2014, 38, 63-70.	0.9	13
30	The role of negative conductances in neuronal subthreshold properties and synaptic integration. Biophysical Reviews, 2017, 9, 827-834.	1.5	13
31	Morphological Alterations in Newly Born Dentate Gyrus Granule Cells That Emerge after Status Epilepticus Contribute to Make Them Less Excitable. PLoS ONE, 2012, 7, e40726.	1.1	13
32	Fetal source extraction from magnetocardiographic recordings by dependent component analysis. Physics in Medicine and Biology, 2005, 50, 4457-4464.	1.6	12
33	A unified theory of E/I synaptic balance, quasicritical neuronal avalanches and asynchronous irregular spiking. Journal of Physics Complexity, 2021, 2, 045001.	0.9	11
34	Characterization of rat behavior in the elevated plus-maze using a directed graph. Journal of Neuroscience Methods, 2009, 184, 251-255.	1.3	10
35	A Dynamical Model of Fast Cortical Reorganization. Journal of Computational Neuroscience, 2004, 16, 177-201.	0.6	9
36	Dependent component analysis for the magnetogastrographic detection of human electrical response activity. Physiological Measurement, 2007, 28, 1029-1044.	1.2	8

#	Article	IF	CITATIONS
37	Asymmetrical voltage response in resonant neurons shaped by nonlinearities. Chaos, 2019, 29, 103135.	1.0	7
38	Dynamical phenomena in complex networks: fundamentals and applications. European Physical Journal: Special Topics, 2021, 230, 2711-2716.	1.2	7
39	Interference with the GABAergic system in the dorsolateral telencephalon and modulation of the electric organ discharge frequency in the weakly electric fish Gymnotus carapo. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187, 925-933.	0.7	6
40	Interplay of activation kinetics and the derivative conductance determines resonance properties of neurons. Physical Review E, 2018, 97, 042408.	0.8	6
41	Binding of Filamentous Actin to CaMKII as Potential Regulation Mechanism of Bidirectional Synaptic Plasticity by β CaMKII in Cerebellar Purkinje Cells. Scientific Reports, 2020, 10, 9019.	1.6	6
42	A realistic computational model of formation and variability of tonotopic maps in the auditory cortex. Neurocomputing, 1999, 26-27, 355-359.	3.5	5
43	Simulation of a vertebrate receptor cell of the olfactory epithelium for use in network models. Neurocomputing, 2002, 44-46, 177-182.	3.5	5
44	Use of Evolutionary Robots as an Auxiliary Tool for Developing Behavioral Models of Rats in an Elevated Plus-Maze. , 2010, , .		5
45	NetPyNE Implementation and Scaling of the Potjans-Diesmann Cortical Microcircuit Model. Neural Computation, 2021, 33, 1993-2032.	1.3	5
46	Biologically Plausible Models of Topographic Map Formation in the Somatosensory and Auditory Cortices. International Journal of Neural Systems, 1999, 09, 265-271.	3.2	4
47	Computational model of topographic reorganization in somatosensory cortex in response to digit lesions. Neurocomputing, 1999, 26-27, 435-441.	3.5	4
48	Realistic computer simulation of cortical lesion induced imbalances in properties of somatotopic maps. Neurocomputing, 2000, 32-33, 453-459.	3.5	4
49	Optimal Interplay between Synaptic Strengths and Network Structure Enhances Activity Fluctuations and Information Propagation in Hierarchical Modular Networks. Brain Sciences, 2020, 10, 228.	1.1	4
50	Building a model of the brain: from detailed connectivity maps to network organization. European Physical Journal: Special Topics, 2021, 230, 2887-2909.	1.2	4
51	A Model Based on Genetic Algorithm for Investigation of the Behavior of Rats in the Elevated Plus-Maze. Lecture Notes in Computer Science, 2012, , 151-158.	1.0	4
52	A biologically plausible computational model of classical conditioning induced reorganization of tonotopic maps in the auditory cortex. Neurocomputing, 2000, 32-33, 685-691.	3.5	3
53	Segmentation of digitized mammograms using self-organizing maps in a breast cancer computer aided diagnosis system. , 0, , .		3
54	Shannon's entropy applied to the analysis of tonotopic reorganization in a computational model of classical conditioning. Neurocomputing, 2002, 44-46, 359-364.	3.5	3

#	Article	IF	CITATIONS
55	Electrical responses of three classes of granule cells of the olfactory bulb to synaptic inputs in different dendritic locations. Frontiers in Computational Neuroscience, 2014, 8, 128.	1.2	3
56	Aplicação de Redes Neurais Artificiais na Classificação de Padrões Posturais em Crianças Respiradoras Bucais e Nasais. Revista De Informatica Teorica E Aplicada, 2007, 14, 91-107.	0.2	3
57	Granger causality in the frequency domain: derivation and applications. Revista Brasileira De Ensino De Fisica, 0, 42, .	0.2	3
58	Alterations of maps induced by blockage of synaptic receptors in a computer simulation of the somatosensory system. Neurocomputing, 2001, 38-40, 1453-1459.	3.5	2
59	A biologically plausible neural network model of the primate primary visual system. Neurocomputing, 2002, 44-46, 957-963.	3.5	2
60	Self-sustained waves in a computational model of the olfactory epithelium with gap junctions. Neurocomputing, 2004, 58-60, 1033-1039.	3.5	2
61	A computational model of the primary auditory cortex exhibiting plasticity in the frequency representation. Neurocomputing, 2006, 70, 3-8.	3.5	2
62	Reduced compartmental model of the periglomerular cell of the mammalian olfactory bulb. BMC Neuroscience, 2009, 10, .	0.8	2
63	Role of morphological changes in newly born granule cells of hippocampus after status epilepticus induced by pilocarpine in hyperexcitability. BMC Neuroscience, 2012, 13, .	0.8	2
64	Effect of synaptic plasticity on functional connectivity and global activity of a neocortical network model. BMC Neuroscience, 2015, 16, .	0.8	2
65	Non-Decaying postsynaptics potentials and delayed spikes in hippocampal pyramidal neurons generated by a zero slope conductance created by the persistent Na ⁺ current. Channels, 2018, 12, 81-88.	1.5	2
66	Molecular mechanisms of detection and discrimination of dynamic signals. Scientific Reports, 2018, 8, 2480.	1.6	2
67	Modeling Hippocampal CA1 Gabaergic Synapses of Audiogenic Rats. International Journal of Neural Systems, 2020, 30, 2050022.	3.2	2
68	Impact of the activation rate of the hyperpolarization- activated current \$\$hbox {I}_{mathrm{h}}\$ on the neuronal membrane time constant and synaptic potential duration. European Physical Journal: Special Topics, 0, , 1.	1.2	2
69	Using information theory for the analysis of cortical reorganization in a realistic computational model of the somatosensory system. Neurocomputing, 2002, 44-46, 923-928.	3.5	1
70	Sensitivity of AMPA receptor channel to calcium oscillations: a computational study. Neurocomputing, 2003, 52-54, 341-346.	3.5	1
71	A possible mechanism of curvature coding in early vision. Neurocomputing, 2005, 65-66, 117-124.	3.5	1
72	A large-scale realistic model of V1 exhibiting orientation selectivity diversity and laminar dependence. BMC Neuroscience, 2007, 8, .	0.8	1

#	Article	IF	CITATIONS
73	A novel anxiety index for the rat behavior in the elevated plus-maze. BMC Neuroscience, 2013, 14, .	0.8	1
74	Self-sustained activity in neural networks: influence of network topology and cell types. BMC Neuroscience, 2013, 14, .	0.8	1
75	βCaMKII regulates bidirectional long-term plasticity in cerebellar Purkinje cells by a CaMKII/PP2B switch mechanism. BMC Neuroscience, 2014, 15, .	0.8	1
76	Firing properties of ventral medullary respiratory neurons in sinoâ€aortic denervated rats. Experimental Physiology, 2019, 104, 39-49.	0.9	1
77	Goalkeeper Game: A New Assessment Tool for Prediction of Gait Performance Under Complex Condition in People With Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 50.	1.7	1
78	Modeling and characterizing stochastic neurons based on in vitro voltage-dependent spike probability functions. European Physical Journal: Special Topics, 0, , 1.	1.2	1
79	Archetypes and Outliers in the Neuromorphological Space. Springer Series in Computational Neuroscience, 2014, , 41-59.	0.3	1
80	A realistic model of tonotopic reorganization in the auditory cortex in response to cochlear lesions. Neurocomputing, 2001, 38-40, 1169-1174.	3.5	0
81	Respiratory rhythm and EEG oscillations in the olfactory system: a study using a biologically detailed model. BMC Neuroscience, 2007, 8, .	0.8	0
82	The effect of gap junctions on the dynamic range in a model of the rod photoreceptors layer. BMC Neuroscience, 2007, 8, .	0.8	0
83	Reduced compartmental Hodgkin-Huxley type models of three different cortical neuron classes. BMC Neuroscience, 2009, 10, .	0.8	Ο
84	Stability and sensitivity analysis of reduced compartmental models of primary visual cortical neurons. BMC Neuroscience, 2009, 10, .	0.8	0
85	A Java-based simulation environment for networks of simplified neuron models. BMC Neuroscience, 2009, 10, .	0.8	0
86	A three-compartment conductance-based model of the rat olfactory receptor neuron. BMC Neuroscience, 2010, 11, .	0.8	0
87	Interplay of periglomerular and granule cell inhibitory synapses on mitral cell spiking. BMC Neuroscience, 2011, 12, .	0.8	Ο
88	Cross-modular processing in a spiking neural network model. BMC Neuroscience, 2011, 12, .	0.8	0
89	Lateral inhibition and odor discrimination in a model of the olfactory bulb. BMC Neuroscience, 2013, 14, .	0.8	0
90	Foreword to the Special Issue on LASCON 2012. Journal of Neuroscience Methods, 2013, 220, 99.	1.3	0

#	Article	IF	CITATIONS
91	Electrical coupling in the retina ganglion cell layer increases the dynamic range. BMC Neuroscience, 2014, 15, .	0.8	0
92	A cortical multi-layered model and the properties of its internally-generated activity. BMC Neuroscience, 2015, 16, .	0.8	0
93	Unravelling how βCaMKII controls the direction of plasticity at parallel fibre-Purkinje cell synapses. AIP Conference Proceedings, 2015, , .	0.3	Ο
94	Conductance-based models and the fragmentation problem: A case study based on hippocampal CA1 pyramidal cell models and epilepsy. Epilepsy and Behavior, 2021, 121, 106841.	0.9	0
95	Modelos de redes de neurônios para o neocórtex e fenômenos emergentes observados. Revista Brasileira De Ensino De Fisica, 2021, 43, .	0.2	Ο
96	Extraction of Gastric Electrical Response Activity from Magnetogastrographic Recordings by DCA. Lecture Notes in Computer Science, 2007, , 585-592.	1.0	0
97	NEMOS: A Java-Based Tool for Neural Models Simulations. Frontiers in Neuroinformatics, 0, 3, .	1.3	Ο
98	Pattern Recognition Using a Recurrent Neural Network Inspired on the Olfactory Bulb. Lecture Notes in Computer Science, 2011, , 275-285.	1.0	0
99	Aplicações da teoria da informação à neurociência. Revista Brasileira De Ensino De Fisica, 2019, 41, .	0.2	0