
Anja Bye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7783783/publications.pdf Version: 2024-02-01

ΔΝΙΛ ΒΥΕ

#	Article	IF	CITATIONS
1	Atherogenic lipidomics profile in healthy individuals with low cardiorespiratory fitness: The HUNT3 fitness study. Atherosclerosis, 2022, 343, 51-57.	0.8	12
2	Associations between circulating microRNAs and coronary plaque characteristics: potential impact from physical exercise. Physiological Genomics, 2022, 54, 129-140.	2.3	10
3	Circulating MicroRNA-210 Concentrations in Patients with Acute Heart Failure: Data from the Akershus Cardiac Examination 2 Study. Clinical Chemistry, 2021, 67, 889-898.	3.2	3
4	Genome wide association study of response to interval and continuous exercise training: the Predict-HIIT study. Journal of Biomedical Science, 2021, 28, 37.	7.0	15
5	Computationally efficient familywise error rate control in genomeâ€wide association studies using score tests for generalized linear models. Scandinavian Journal of Statistics, 2020, 47, 1090-1113.	1.4	2
6	Identification of novel genetic variants associated with cardiorespiratory fitness. Progress in Cardiovascular Diseases, 2020, 63, 341-349.	3.1	21
7	MicroRNA signatures predict early major coronary events in middle-aged men and women. Cell Death and Disease, 2020, 11, 74.	6.3	5
8	Impact of Highâ€Intensity Interval Training on Disease Activity and Disease in Patients With Psoriatic Arthritis: A Randomized Controlled Trial. Arthritis Care and Research, 2019, 71, 530-537.	3.4	32
9	Circulating microRNAs as predictive biomarkers of myocardial infarction: Evidence from the HUNT study. Atherosclerosis, 2019, 289, 1-7.	0.8	42
10	A Multi-Center Comparison of O2peak Trainability Between Interval Training and Moderate Intensity Continuous Training. Frontiers in Physiology, 2019, 10, 19.	2.8	75
11	Effect of high-intensity interval training on cardiovascular disease risk factors and body composition in psoriatic arthritis: a randomised controlled trial. RMD Open, 2018, 4, e000729.	3.8	17
12	Powerful extreme phenotype sampling designs and score tests for genetic association studies. Statistics in Medicine, 2018, 37, 4234-4251.	1.6	27
13	MicroRNAs as Important Regulators of Exercise Adaptation. Progress in Cardiovascular Diseases, 2017, 60, 130-151.	3.1	114
14	Circulating microRNAs predict future fatal myocardial infarction in healthy individuals – The HUNT study. Journal of Molecular and Cellular Cardiology, 2016, 97, 162-168.	1.9	109
15	The effects of high intensity interval training in women with rheumatic disease: a pilot study. European Journal of Applied Physiology, 2015, 115, 2081-2089.	2.5	41
16	Blunted Cardiomyocyte Remodeling Response in Exercise-Resistant Rats. Journal of the American College of Cardiology, 2015, 65, 1378-1380.	2.8	11
17	A small molecule activator of AKT does not reduce ischemic injury of the rat heart. Journal of Translational Medicine, 2015, 13, 76.	4.4	27
18	Prognostic Value of Circulating MicroRNA-210 Levels in Patients with Moderate to Severe Aortic Stenosis. PLoS ONE, 2014, 9, e91812.	2.5	35

Anja Bye

#	Article	IF	CITATIONS
19	Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: A randomized trial. International Journal of Cardiology, 2014, 177, 409-417.	1.7	37
20	Circulating MicroRNAs and Aerobic Fitness – The HUNT-Study. PLoS ONE, 2013, 8, e57496.	2.5	128
21	Serum Levels of Choline-Containing Compounds Are Associated with Aerobic Fitness Level: The HUNT-Study. PLoS ONE, 2012, 7, e42330.	2.5	23
22	Time Course of Endothelial Adaptation After Acute and Chronic Exercise in Patients With Metabolic Syndrome. Journal of Strength and Conditioning Research, 2011, 25, 2552-2558.	2.1	44
23	Transcriptional changes in blood after aerobic interval training in patients with the metabolic syndrome. European Journal of Cardiovascular Prevention and Rehabilitation, 2009, 16, 47-52.	2.8	11
24	Response to Letter Regarding Article, "Aerobic Interval Training Versus Continuous Moderate Exercise as a Treatment for the Metabolic Syndrome: A Pilot Study― Circulation, 2009, 119, .	1.6	5
25	Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: A randomized study of cardiovascular effects and quality of life. American Heart Journal, 2009, 158, 1031-1037.	2.7	234
26	Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clinical Science, 2009, 116, 317-326.	4.3	260
27	Carbon Monoxide Levels Experienced by Heavy Smokers Impair Aerobic Capacity and Cardiac Contractility and Induce Pathological Hypertrophy. Inhalation Toxicology, 2008, 20, 635-646.	1.6	23
28	Aerobic Interval Training Versus Continuous Moderate Exercise as a Treatment for the Metabolic Syndrome. Circulation, 2008, 118, 346-354.	1.6	912
29	Aerobic capacity-dependent differences in cardiac gene expression. Physiological Genomics, 2008, 33, 100-109.	2.3	37
30	Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO _{2max} . Physiological Genomics, 2008, 35, 213-221.	2.3	32
31	Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clinical Science, 2008, 115, 283-293.	4.3	238
32	Endothelial Function in Highly Endurance-Trained Men: Effects of Acute Exercise. Journal of Strength and Conditioning Research, 2008, 22, 535-542.	2.1	85
33	Heat shock increases survival in rats exposed to hyperbaric pressure. Diving and Hyperbaric Medicine, 2008, 38, 189-93.	0.5	7
34	Superior Cardiovascular Effect of Aerobic Interval Training Versus Moderate Continuous Training in Heart Failure Patients. Circulation, 2007, 115, 3086-3094.	1.6	1,640