List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7783555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell, 1994, 79, 1147-1156.	13.5	3,322
2	15-Deoxy-Δ12,14-Prostaglandin J2 is a ligand for the adipocyte determination factor PPARÎ3. Cell, 1995, 83, 803-812.	13.5	2,811
3	Fat and Beyond: The Diverse Biology of PPARÎ ³ . Annual Review of Biochemistry, 2008, 77, 289-312.	5.0	1,757
4	Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPARÎ ³ . Cell, 1998, 93, 229-240.	13.5	1,726
5	PPARÎ ³ Promotes Monocyte/Macrophage Differentiation and Uptake of Oxidized LDL. Cell, 1998, 93, 241-252.	13.5	1,689
6	A PPARÎ ³ -LXR-ABCA1 Pathway in Macrophages Is Involved in Cholesterol Efflux and Atherogenesis. Molecular Cell, 2001, 7, 161-171.	4.5	1,240
7	Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nature Medicine, 2003, 9, 213-219.	15.2	1,088
8	PPAR-Î ³ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Medicine, 2001, 7, 48-52.	15.2	1,014
9	Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7604-7609.	3.3	844
10	Liver X receptors as integrators of metabolic and inflammatory signaling. Journal of Clinical Investigation, 2006, 116, 607-614.	3.9	823
11	Terminal Differentiation of Human Breast Cancer through PPARÎ ³ . Molecular Cell, 1998, 1, 465-470.	4.5	779
12	Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature, 2008, 454, 470-477.	13.7	712
13	LXR Regulates Cholesterol Uptake Through Idol-Dependent Ubiquitination of the LDL Receptor. Science, 2009, 325, 100-104.	6.0	661
14	Direct and Indirect Mechanisms for Regulation of Fatty Acid Synthase Gene Expression by Liver X Receptors. Journal of Biological Chemistry, 2002, 277, 11019-11025.	1.6	637
15	Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nature Reviews Molecular Cell Biology, 2012, 13, 213-224.	16.1	616
16	Liver X Receptor Signaling Pathways in Cardiovascular Disease. Molecular Endocrinology, 2003, 17, 985-993.	3.7	581
17	LXR Signaling Couples Sterol Metabolism to Proliferation in the Acquired Immune Response. Cell, 2008, 134, 97-111.	13.5	579
18	Apoptotic Cells Promote Their Own Clearance and Immune Tolerance through Activation of the Nuclear Receptor LXR. Immunity, 2009, 31, 245-258.	6.6	564

#	Article	IF	CITATIONS
19	Activators of the nuclear receptor PPAR \hat{I}^3 enhance colon polyp formation. Nature Medicine, 1998, 4, 1058-1061.	15.2	556
20	LXR-Dependent Gene Expression Is Important for Macrophage Survival and the Innate Immune Response. Cell, 2004, 119, 299-309.	13.5	498
21	Liver X receptors in lipid metabolism: opportunities for drug discovery. Nature Reviews Drug Discovery, 2014, 13, 433-444.	21.5	483
22	Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5419-5424.	3.3	437
23	Crosstalk between LXR and Toll-like Receptor Signaling Mediates Bacterial and Viral Antagonism of Cholesterol Metabolism. Molecular Cell, 2003, 12, 805-816.	4.5	436
24	Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11896-11901.	3.3	410
25	Liver X receptors in lipid signalling and membrane homeostasis. Nature Reviews Endocrinology, 2018, 14, 452-463.	4.3	387
26	Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR7 and RXRa. Nucleic Acids Research, 1994, 22, 5628-5634.	6.5	352
27	An LXR Agonist Promotes Glioblastoma Cell Death through Inhibition of an EGFR/AKT/SREBP-1/LDLR–Dependent Pathway. Cancer Discovery, 2011, 1, 442-456.	7.7	346
28	The TMAO-Generating Enzyme Flavin Monooxygenase 3 Is a Central Regulator of Cholesterol Balance. Cell Reports, 2015, 10, 326-338.	2.9	307
29	Autoregulation of the Human Liver X Receptor $\hat{I}\pm$ Promoter. Molecular and Cellular Biology, 2001, 21, 7558-7568.	1.1	299
30	Attenuation of neuroinflammation and Alzheimer's disease pathology by liver x receptors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10601-10606.	3.3	294
31	Liver X Receptor-dependent Repression of Matrix Metalloproteinase-9 Expression in Macrophages. Journal of Biological Chemistry, 2003, 278, 10443-10449.	1.6	289
32	Role for Peroxisome Proliferator-Activated Receptor α in Oxidized Phospholipid–Induced Synthesis of Monocyte Chemotactic Protein-1 and Interleukin-8 by Endothelial Cells. Circulation Research, 2000, 87, 516-521.	2.0	284
33	NUCLEAR RECEPTORS IN MACROPHAGE BIOLOGY: At the Crossroads of Lipid Metabolism and Inflammation. Annual Review of Cell and Developmental Biology, 2004, 20, 455-480.	4.0	262
34	Phospholipid Remodeling in Physiology and Disease. Annual Review of Physiology, 2019, 81, 165-188.	5.6	259
35	A role for the apoptosis inhibitory factor AIM/Spα/Api6 in atherosclerosis development. Cell Metabolism, 2005, 1, 201-213.	7.2	257
36	Liver X Receptor Signaling Pathways and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1513-1518.	1.1	257

#	Article	IF	CITATIONS
37	LXRs Regulate ER Stress and Inflammation through Dynamic Modulation of Membrane Phospholipid Composition. Cell Metabolism, 2013, 18, 685-697.	7.2	246
38	Ligand activation of LXRβ reverses atherosclerosis and cellular cholesterol overload in mice lacking LXRα and apoE. Journal of Clinical Investigation, 2007, 117, 2337-2346.	3.9	244
39	Induction of NR4A Orphan Nuclear Receptor Expression in Macrophages in Response to Inflammatory Stimuli. Journal of Biological Chemistry, 2005, 280, 29256-29262.	1.6	241
40	An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers. Cancer Cell, 2016, 30, 683-693.	7.7	237
41	Long Noncoding RNA Discovery in Cardiovascular Disease. Circulation Research, 2018, 122, 155-166.	2.0	224
42	Phospholipid Remodeling and Cholesterol Availability Regulate Intestinal Stemness and Tumorigenesis. Cell Stem Cell, 2018, 22, 206-220.e4.	5.2	220
43	LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. ELife, 2015, 4, e08009.	2.8	219
44	Regulated Expression of the Apolipoprotein E/C-I/C-IV/C-II Gene Cluster in Murine and Human Macrophages. Journal of Biological Chemistry, 2002, 277, 31900-31908.	1.6	208
45	Nuclear Receptors in Lipid Metabolism: Targeting the Heart of Dyslipidemia. Annual Review of Medicine, 2006, 57, 313-329.	5.0	204
46	Genetic Architecture of Insulin Resistance in the Mouse. Cell Metabolism, 2015, 21, 334-347.	7.2	196
47	Regulation of Macrophage Inflammatory Gene Expression by the Orphan Nuclear Receptor Nur77. Molecular Endocrinology, 2006, 20, 786-794.	3.7	185
48	The Small Molecule Harmine Is an Antidiabetic Cell-Type-Specific Regulator of PPARÎ ³ Expression. Cell Metabolism, 2007, 5, 357-370.	7.2	180
49	Aster Proteins Facilitate Nonvesicular Plasma Membrane to ER Cholesterol Transport in Mammalian Cells. Cell, 2018, 175, 514-529.e20.	13.5	177
50	Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature, 2016, 534, 124-128.	13.7	175
51	Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Science Translational Medicine, 2016, 8, 334ra54.	5.8	174
52	Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nature Medicine, 2018, 24, 304-312.	15.2	171
53	Impaired Development of Atherosclerosis in Hyperlipidemic Ldlr â^'/â^' and ApoE â^'/â^' Mice Transplanted With Abcg1 â^'/â^' Bone Marrow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2301-2307.	1.1	164
54	Inter-organ cross-talk in metabolic syndrome. Nature Metabolism, 2019, 1, 1177-1188.	5.1	157

#	Article	IF	CITATIONS
55	LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. Journal of Clinical Investigation, 2010, 120, 4415-4424.	3.9	157
56	The Phospholipid Transfer Protein Gene Is a Liver X Receptor Target Expressed by Macrophages in Atherosclerotic Lesions. Molecular and Cellular Biology, 2003, 23, 2182-2191.	1.1	143
57	Before They Were Fat: Adipocyte Progenitors. Cell Metabolism, 2008, 8, 454-457.	7.2	142
58	IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell, 2018, 172, 218-233.e17.	13.5	142
59	Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. ELife, 2015, 4, .	2.8	142
60	Adipose Subtype-Selective Recruitment of TLE3 or Prdm16 by PPARÎ ³ Specifies Lipid Storage versus Thermogenic Gene Programs. Cell Metabolism, 2013, 17, 423-435.	7.2	128
61	Reciprocal Regulation of Hepatic and Adipose Lipogenesis by Liver X Receptors in Obesity and Insulin Resistance. Cell Metabolism, 2013, 18, 106-117.	7.2	124
62	The GPIHBP1–LPL Complex Is Responsible for the Margination of Triglyceride-Rich Lipoproteins in Capillaries. Cell Metabolism, 2014, 19, 849-860.	7.2	124
63	Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. Journal of Clinical Investigation, 2012, 122, 337-347.	3.9	120
64	TLE3 Is a Dual-Function Transcriptional Coregulator of Adipogenesis. Cell Metabolism, 2011, 13, 413-427.	7.2	119
65	The E3 Ubiquitin Ligase IDOL Induces the Degradation of the Low Density Lipoprotein Receptor Family Members VLDLR and ApoER2. Journal of Biological Chemistry, 2010, 285, 19720-19726.	1.6	117
66	Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 969-986.e7.	7.2	117
67	Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia. New England Journal of Medicine, 2017, 376, 1647-1658.	13.9	112
68	Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis, 2015, 242, 29-36.	0.4	111
69	Single cell analysis reveals immune cell–adipocyte crosstalk regulating the transcription of thermogenic adipocytes. ELife, 2019, 8, .	2.8	110
70	Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling. Progress in Lipid Research, 2013, 52, 305-316.	5.3	109
71	Liver X Receptor Signaling Is a Determinant of Stellate Cell Activation and Susceptibility to Fibrotic Liver Disease. Gastroenterology, 2011, 140, 1052-1062.	0.6	108
72	Feedback Regulation of Cholesterol Uptake by the LXR–IDOL–LDLR Axis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2541-2546.	1.1	105

#	Article	IF	CITATIONS
73	Cholesterol Accumulation in CD11c+ Immune Cells Is a Causal and Targetable Factor in Autoimmune Disease. Immunity, 2016, 45, 1311-1326.	6.6	99
74	Liver X receptors are regulators of adipocyte gene expression but not differentiation. Journal of Lipid Research, 2004, 45, 616-625.	2.0	98
75	Intestinal Phospholipid Remodeling Is Required for Dietary-Lipid Uptake and Survival on a High-Fat Diet. Cell Metabolism, 2016, 23, 492-504.	7.2	98
76	MafB promotes atherosclerosis by inhibiting foam-cell apoptosis. Nature Communications, 2014, 5, 3147.	5.8	92
77	Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. Journal of Experimental Medicine, 2015, 212, 2147-2163.	4.2	86
78	The Peroxisome Proliferator-Activated Receptor N-Terminal Domain Controls Isotype-Selective Gene Expression and Adipogenesis. Molecular Endocrinology, 2006, 20, 1261-1275.	3.7	84
79	The Arginase II Gene Is an Anti-inflammatory Target of Liver X Receptor in Macrophages. Journal of Biological Chemistry, 2006, 281, 32197-32206.	1.6	84
80	Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation. PLoS ONE, 2016, 11, e0162228.	1.1	76
81	The IDOL–UBE2D complex mediates sterol-dependent degradation of the LDL receptor. Genes and Development, 2011, 25, 1262-1274.	2.7	75
82	Transcription of the Vascular Endothelial Growth Factor Gene in Macrophages Is Regulated by Liver X Receptors. Journal of Biological Chemistry, 2004, 279, 9905-9911.	1.6	73
83	The LXR–Idol Axis Differentially Regulates Plasma LDL Levels in Primates and Mice. Cell Metabolism, 2014, 20, 910-918.	7.2	72
84	High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2000-2005.	3.3	71
85	ER phospholipid composition modulates lipogenesis during feeding and in obesity. Journal of Clinical Investigation, 2017, 127, 3640-3651.	3.9	70
86	Targeted Disruption of the Idol Gene Alters Cellular Regulation of the Low-Density Lipoprotein Receptor by Sterols and Liver X Receptor Agonists. Molecular and Cellular Biology, 2011, 31, 1885-1893.	1.1	69
87	IDOL Stimulates Clathrin-Independent Endocytosis and Multivesicular Body-Mediated Lysosomal Degradation of the Low-Density Lipoprotein Receptor. Molecular and Cellular Biology, 2013, 33, 1503-1514.	1.1	68
88	Estrogen receptor α controls metabolism in white and brown adipocytes by regulating <i>Polg1</i> and mitochondrial remodeling. Science Translational Medicine, 2020, 12, .	5.8	64
89	Identification of a fat cell enhancer: Analysis of requirements for adipose tissue-specific gene expression. Journal of Cellular Biochemistry, 1992, 49, 219-224.	1.2	63
90	Progesterone Receptor in the Vascular Endothelium Triggers Physiological Uterine Permeability Preimplantation. Cell, 2014, 156, 549-562.	13.5	62

#	Article	IF	CITATIONS
91	Estrogen Receptor (ER)α-regulated Lipocalin 2 Expression in Adipose Tissue Links Obesity with Breast Cancer Progression. Journal of Biological Chemistry, 2015, 290, 5566-5581.	1.6	61
92	Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins. Nature Immunology, 2020, 21, 746-755.	7.0	60
93	A Nuclear Receptor Corepressor–Dependent Pathway Mediates Suppression of Cytokine-Induced C-Reactive Protein Gene Expression by Liver X Receptor. Circulation Research, 2006, 99, e88-99.	2.0	59
94	Constitutive activation of LXR in macrophages regulates metabolic and inflammatory gene expression: identification of ARL7 as a direct target. Journal of Lipid Research, 2011, 52, 531-539.	2.0	58
95	A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell Metabolism, 2018, 27, 1138-1155.e6.	7.2	58
96	Phosphorylation of the liver X receptors. FEBS Letters, 2006, 580, 4835-4841.	1.3	56
97	Vestigial-like 3 is an inhibitor of adipocyte differentiation. Journal of Lipid Research, 2013, 54, 473-481.	2.0	56
98	N-Acylthiadiazolines, a New Class of Liver X Receptor Agonists with Selectivity for LXRβ. Journal of Medicinal Chemistry, 2007, 50, 4255-4259.	2.9	55
99	Regulation of macrophage gene expression by peroxisome-proliferator-activated receptor y. Current Opinion in Lipidology, 1999, 10, 485-490.	1.2	54
100	NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes. Cell Metabolism, 2018, 27, 1055-1066.e3.	7.2	54
101	FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20107-20112.	3.3	53
102	Bone marrow NR4A expression is not a dominant factor in the development of atherosclerosis or macrophage polarization in mice. Journal of Lipid Research, 2013, 54, 806-815.	2.0	53
103	Critical Roles of the Histone Methyltransferase MLL4/KMT2D in Murine Hepatic Steatosis Directed by ABL1 and PPARγ2. Cell Reports, 2016, 17, 1671-1682.	2.9	53
104	Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon. Nature Communications, 2014, 5, 5494.	5.8	50
105	The N342S MYLIP polymorphism is associated with high total cholesterol and increased LDL receptor degradation in humans. Journal of Clinical Investigation, 2011, 121, 3062-3071.	3.9	50
106	Identification and characterization of two alternatively spliced transcript variants of human liver X receptor alpha. Journal of Lipid Research, 2005, 46, 2570-2579.	2.0	48
107	Long Noncoding RNA Facilitated Gene Therapy Reduces Atherosclerosis in a Murine Model of Familial Hypercholesterolemia. Circulation, 2017, 136, 776-778.	1.6	48
108	KDM4B protects against obesity and metabolic dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5566-E5575.	3.3	47

#	Article	IF	CITATIONS
109	Both K63 and K48 ubiquitin linkages signal lysosomal degradation of the LDL receptor. Journal of Lipid Research, 2013, 54, 1410-1420.	2.0	46
110	Lesion Macrophages Are a Key Target for the Antiatherogenic Effects of LXR Agonists. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 10-11.	1.1	44
111	Hepatic transcriptional responses to fasting and feeding. Genes and Development, 2021, 35, 635-657.	2.7	43
112	Prdm4 induction by the small molecule butein promotes white adipose tissue browning. Nature Chemical Biology, 2016, 12, 479-481.	3.9	42
113	Macrophages release plasma membrane-derived particles rich in accessible cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8499-E8508.	3.3	41
114	The Orphan Nuclear Receptor Nur77 Is a Determinant of Myofiber Size and Muscle Mass in Mice. Molecular and Cellular Biology, 2015, 35, 1125-1138.	1.1	40
115	LXRα is uniquely required for maximal reverse cholesterol transport and atheroprotection in ApoE-deficient mice. Journal of Lipid Research, 2012, 53, 1126-1133.	2.0	39
116	Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. ELife, 2017, 6,	2.8	39
117	Aster Proteins Regulate the Accessible Cholesterol Pool in the Plasma Membrane. Molecular and Cellular Biology, 2020, 40, .	1.1	39
118	Dietary Cholesterol Promotes Adipocyte Hypertrophy and Adipose Tissue Inflammation in Visceral, but Not in Subcutaneous, Fat in Monkeys. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1880-1887.	1.1	35
119	Palmoplantar Keratoderma along with Neuromuscular and Metabolic Phenotypes in Slurp1 -Deficient Mice. Journal of Investigative Dermatology, 2014, 134, 1589-1598.	0.3	35
120	The small molecule phenamil is a modulator of adipocyte differentiation and PPARÎ ³ expression. Journal of Lipid Research, 2010, 51, 2775-2784.	2.0	34
121	Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. Journal of Clinical Investigation, 2021, 131, .	3.9	34
122	Adopting New Orphans into the Family of Metabolic Regulators. Molecular Endocrinology, 2008, 22, 1743-1753.	3.7	33
123	LXRs regulate features of age-related macular degeneration and may be a potential therapeutic target. JCI Insight, 2020, 5, .	2.3	33
124	RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. Journal of Clinical Investigation, 2017, 127, 987-1004.	3.9	33
125	The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and AÎ ² amyloidosis. Science Translational Medicine, 2015, 7, 314ra184.	5.8	30
126	Liver X Receptor Nuclear Receptors Are Transcriptional Regulators of Dendritic Cell Chemotaxis. Molecular and Cellular Biology, 2018, 38, .	1.1	30

#	Article	IF	CITATIONS
127	Common and Differential Transcriptional Actions of Nuclear Receptors Liver X Receptors α and β in Macrophages. Molecular and Cellular Biology, 2019, 39, .	1.1	30
128	Eosinophils in Fat: Pink Is the New Brown. Cell, 2014, 157, 1249-1250.	13.5	29
129	Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis. Journal of Clinical Investigation, 2018, 129, 281-295.	3.9	29
130	Release of cholesterol-rich particles from the macrophage plasma membrane during movement of filopodia and lamellipodia. ELife, 2019, 8, .	2.8	27
131	Vascular endothelium plays a key role in directing pulmonary epithelial cell differentiation. Journal of Cell Biology, 2017, 216, 3369-3385.	2.3	26
132	Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism. Genes and Development, 2019, 33, 747-762.	2.7	26
133	The E3 ubiquitin ligase IDOL regulates synaptic ApoER2 levels and is important for plasticity and learning. ELife, 2017, 6, .	2.8	24
134	LXR Deficiency Confers Increased Protection against Visceral Leishmania Infection in Mice. PLoS Neglected Tropical Diseases, 2010, 4, e886.	1.3	23
135	Orphan nuclear receptors find a home in the arterial wall. Current Atherosclerosis Reports, 2002, 4, 213-221.	2.0	22
136	The macrophage LBP gene is an LXR target that promotes macrophage survival and atherosclerosis. Journal of Lipid Research, 2014, 55, 1120-1130.	2.0	21
137	Transgenic Expression of Dominant-Active IDOL in Liver Causes Diet-Induced Hypercholesterolemia and Atherosclerosis in Mice. Circulation Research, 2014, 115, 442-449.	2.0	21
138	Cultured macrophages transfer surplus cholesterol into adjacent cells in the absence of serum or high-density lipoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10476-10483.	3.3	21
139	Selective Aster inhibitors distinguish vesicular and nonvesicular sterol transport mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
140	PON2 Deficiency Leads to Increased Susceptibility to Diet-Induced Obesity. Antioxidants, 2019, 8, 19.	2.2	19
141	Genome-Wide Association Studies Identify New Targets in Cardiovascular Disease. Science Translational Medicine, 2010, 2, 48ps46.	5.8	18
142	ABHD12 and LPCAT3 Interplay Regulates a Lyso-phosphatidylserine-C20:4 Phosphatidylserine Lipid Network Implicated in Neurological Disease. Biochemistry, 2020, 59, 1793-1799.	1.2	16
143	Palmoplantar Keratoderma in Slurp2-Deficient Mice. Journal of Investigative Dermatology, 2016, 136, 436-443.	0.3	15
144	A Novel Type 2 Diabetes Mouse Model of Combined Diabetic Kidney Disease and Atherosclerosis. American Journal of Pathology, 2018, 188, 343-352.	1.9	14

#	Article	IF	CITATIONS
145	Noggin depletion in adipocytes promotes obesity in mice. Molecular Metabolism, 2019, 25, 50-63.	3.0	14
146	Transgenic tomatoes expressing the 6F peptide and ezetimibe prevent diet-induced increases of IFN-β and cholesterol 25-hydroxylase in jejunum. Journal of Lipid Research, 2017, 58, 1636-1647.	2.0	13
147	LDL Receptor Pathway Regulation by miR-224 and miR-520d. Frontiers in Cardiovascular Medicine, 2020, 7, 81.	1.1	13
148	Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells. Journal of Clinical Investigation, 2022, 132, .	3.9	13
149	Peroxisome Proliferator-Activated Receptor γ Dances with Different Partners in Macrophage and Adipocytes. Molecular and Cellular Biology, 2010, 30, 2076-2077.	1.1	12
150	IDOL regulates systemic energy balance through control of neuronal VLDLR expression. Nature Metabolism, 2019, 1, 1089-1100.	5.1	12
151	Integrative analysis reveals multiple modes of LXR transcriptional regulation in liver. Proceedings of the United States of America, 2022, 119, .	3.3	11
152	NanoSIMS imaging reveals unexpected heterogeneity in nutrient uptake by brown adipocytes. Biochemical and Biophysical Research Communications, 2018, 504, 899-902.	1.0	8
153	Therapeutic IDOL Reduction Ameliorates Amyloidosis and Improves Cognitive Function in APP/PS1 Mice. Molecular and Cellular Biology, 2020, 40, .	1.1	8
154	Obese Skeletal Muscle–Expressed Interferon Regulatory Factor 4 Transcriptionally Regulates Mitochondrial Branched-Chain Aminotransferase Reprogramming Metabolome. Diabetes, 2022, 71, 2256-2271.	0.3	6
155	LXR: A nuclear receptor target for cardiovascular disease?. Drug Discovery Today: Therapeutic Strategies, 2005, 2, 97-103.	0.5	5
156	Brap regulates liver morphology and hepatocyte turnover via modulation of the Hippo pathway. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201859119.	3.3	4
157	Enhanced Thermogenesis in the Blinc of an Eye. Molecular Cell, 2014, 55, 343-344.	4.5	3
158	Pioneering EBF2 remodels the brown fat chromatin landscape. Genes and Development, 2017, 31, 632-633.	2.7	3
159	The ASM Journals Committee Values the Contributions of Black Microbiologists. MBio, 2020, 11, .	1.8	3
160	NOTUM promotes thermogenic capacity and protects against diet-induced obesity in male mice. Scientific Reports, 2021, 11, 16409.	1.6	3
161	SUMOylation Places LRH-1 in PROXimity to Lipid Metabolism. Cell Metabolism, 2014, 20, 558-559.	7.2	2
162	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Microbiology and Biology Education, 2020, 21, .	0.5	2

#	Article	IF	CITATIONS
163	In Search of Small Molecules That Selectively Inhibit MBOAT4. Molecules, 2021, 26, 7599.	1.7	2
164	sLRP1ng Up Glucose: LRP1 Regulates Hepatic Insulin Responses. EBioMedicine, 2016, 7, 17-18.	2.7	1
165	Phenamil, an amiloride derivative, restricts long bone growth and alters keeled-sternum bone architecture in growing chickens. Poultry Science, 2017, 96, 2471-2479.	1.5	1
166	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Clinical Microbiology, 2020, 58, .	1.8	1
167	USP20 links feeding-induced cholesterol synthesis and energy expenditure. Science China Life Sciences, 2021, 64, 337-338.	2.3	1
168	The ASM Journals Committee Values the Contributions of Black Microbiologists. Applied and Environmental Microbiology, 2020, 86, .	1.4	1
169	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSphere, 2020, 5, .	1.3	1
170	Amiloride Derivative Phenamil Restricts Long Bone Growth in Broilers in Conjunction with Zinc Accumulation. FASEB Journal, 2013, 27, 1084.1.	0.2	1
171	The ASM Journals Committee Values the Contributions of Black Microbiologists. Clinical Microbiology Reviews, 2020, 33, .	5.7	1
172	Linking metabolism to immunity through PPARÎ ³ . Blood, 2007, 110, 3092-3093.	0.6	0
173	Lnc-ing microRNA activity to atheroprotection. Nature Metabolism, 2019, 1, 10-11.	5.1	0
174	The ASM Journals Committee Values the Contributions of Black Microbiologists. Infection and Immunity, 2020, 88, .	1.0	0
175	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Spectrum, 2020, 8, .	1.2	0
176	The ASM Journals Committee Values the Contributions of Black Microbiologists. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	0
177	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Virology, 2020, 94, .	1.5	0
178	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Bacteriology, 2020, 202, .	1.0	0
179	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology and Molecular Biology Reviews, 2020, 84,	2.9	0
180	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSystems, 2020, 5, .	1.7	0

#	Article	IF	CITATIONS
181	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Resource Announcements, 2020, 9, .	0.3	0
182	Nuclear receptors at the crossroads of lipid metabolism and inflammation. FASEB Journal, 2006, 20, A454.	0.2	0
183	Abstract 634: Silencing miR144 Enhances Regression and Attenutates Progression of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	0
184	The ASM Journals Committee Values the Contributions of Black Microbiologists. Molecular and Cellular Biology, 2020, 40, .	1.1	0
185	Abstract PO-095: A cancer cell-intrinsic GOT2-PPARÎ' axis suppresses antitumor immunity. , 2021, , .		0
186	2021 Acknowledgment of MCB Ad Hoc Reviewers. Molecular and Cellular Biology, 2021, 41, .	1.1	0
187	Abstract 61: LXR Agonist Treatment of Nonhuman Primates Increases LDL Cholesterol due to Decreased Hepatic LDL Receptor Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0
188	Abstract 619: A Role for Macrophage Lipopolysaccharide Binding Protein in Atherosclerosis Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	1.1	0
189	Abstract 19546: Silencing miR-144 Enhances Regression and Reduces Progression of Atheroscleoris. Circulation, 2015, 132, .	1.6	0