Minghe Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7783285/publications.pdf

Version: 2024-02-01

109321 98798 5,034 122 35 67 citations h-index g-index papers 122 122 122 2278 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Homogeneous/Inhomogeneousâ€Structured Dielectrics and their Energyâ€Storage Performances. Advanced Materials, 2017, 29, 1601727.	21.0	909
2	Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. Journal of the European Ceramic Society, 2015, 35, 545-553.	5.7	281
3	Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. Journal of the European Ceramic Society, 2014, 34, 1209-1217.	5.7	218
4	Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. Journal of the European Ceramic Society, 2019, 39, 1103-1109.	5.7	187
5	Structure, Dielectric Properties and Temperature Stability of BaTiO ₃ êeBi(Mg _{1/2} Ti _{1/2})O ₃ Perovskite Solid Solutions. Journal of the American Ceramic Society, 2011, 94, 3412-3417.	3.8	150
6	Structure and electrical properties of lead-free Bi _{0.5} Na _{0.5} TiO ₃ -based ceramics for energy-storage applications. RSC Advances, 2016, 6, 59280-59291.	3.6	141
7	Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere. Journal of the European Ceramic Society, 2014, 34, 1755-1760.	5.7	114
8	Energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 ceramics fabricated by wet-chemical method. Journal of the European Ceramic Society, 2017, 37, 99-106.	5 . 7	113
9	Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3-BaTiO3 ceramics modified with NaNbO3. Journal of the European Ceramic Society, 2016, 36, 2469-2477.	5.7	99
10	Ultraâ€Wide Temperature Stable Dielectrics Based on Bi _{0.5} Na _{0.5} TiO ₃ â€"NaNbO ₃ System. Journal of the American Ceramic Society, 2015, 98, 3119-3126.	3.8	97
11	Improved Energy Storage Properties Accompanied by Enhanced Interface Polarization in Annealed Microwaveâ€Sintered BST. Journal of the American Ceramic Society, 2015, 98, 3212-3222.	3.8	90
12	Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceramics International, 2014, 40, 14127-14132.	4.8	87
13	Effects of Sr/Ti ratio on the microstructure and energy storage properties of nonstoichiometric SrTiO3 ceramics. Ceramics International, 2014, 40, 929-933.	4.8	86
14	Effects of silica coating on the microstructures and energy storage properties of BaTiO 3 ceramics. Materials Research Bulletin, 2015, 67, 70-76.	5. 2	84
15	Dielectric Relaxation in <scp>Zr</scp> â€Doped <scp>SrTiO</scp> ₃ Ceramics Sintered in N ₂ with Giant Permittivity and Low Dielectric Loss. Journal of the American Ceramic Society, 2015, 98, 476-482.	3.8	80
16	Dielectric relaxation behavior and energy storage properties of Sn modified SrTiO 3 based ceramics. Ceramics International, 2016, 42, 12796-12801.	4.8	77
17	Structure and Dielectric Properties of <scp><scp>BaTiO</scp></scp> 3– <scp><scp>BiYO</scp></scp> ₃ Perovskite Solid Solutions. Journal of the American Ceramic Society, 2014, 97, 1797-1801.	3.8	73
18	Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 2726-2732.	2.2	70

#	Article	IF	CITATIONS
19	Structure, electrical and dielectric properties of Ca substituted BaTiO3 ceramics. Ceramics International, 2018, 44, 11109-11115.	4.8	59
20	Effect of SiO 2 additive on dielectric response and energy storage performance of Ba 0.4 Sr 0.6 TiO 3 ceramics. Ceramics International, 2016, 42, 12639-12643.	4.8	55
21	A new energy-storage ceramic system based on Bi0.5Na0.5TiO3 ternary solid solution. Journal of Materials Science: Materials in Electronics, 2016, 27, 322-329.	2.2	55
22	Defect engineering toward the structures and dielectric behaviors of (Nb, Zn) co-doped SrTiO3 ceramics. Journal of the European Ceramic Society, 2020, 40, 49-55.	5.7	55
23	Structural and dielectric behavior of giant permittivity SrNbxTi1â^'xO3 ceramics sintered in nitrogen atmosphere. Ceramics International, 2016, 42, 13593-13600.	4.8	54
24	High breakdown strength and energy storage performance in (Nb, Zn) modified SrTiO ₃ ceramics <i>via</i> synergy manipulation. Journal of Materials Chemistry C, 2020, 8, 2019-2027.	5.5	52
25	Improved breakdown strength and energy storage density of a Ce doped strontium titanate core by silica shell coating. Journal of Materials Chemistry C, 2018, 6, 9130-9139.	5.5	51
26	Temperature stability of dielectric properties for xBiAlO3â€"(1â^'x)BaTiO3 ceramics. Journal of the European Ceramic Society, 2015, 35, 2303-2311.	5.7	49
27	Enhanced energy storage properties of BaTiO3 thin films by Ba0.4Sr0.6TiO3 layers modulation. Journal of Alloys and Compounds, 2018, 765, 362-368.	5.5	49
28	Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors <i>via</i> amorphous-structure engineering. Journal of Materials Chemistry C, 2019, 7, 13632-13639.	5.5	45
29	Effect of HfO 2 addition as intergranular grains on the energy storage behavior of Ca 0.6 Sr 0.4 TiO 3 ceramics. Journal of the European Ceramic Society, 2016, 36, 3157-3163.	5.7	42
30	Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO3 bulk ceramics for high energy density capacitor applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 11491-11499.	2.2	42
31	Defect structureâ€electrical property relationship in Mnâ€doped calcium strontium titanate dielectric ceramics. Journal of the American Ceramic Society, 2017, 100, 4638-4648.	3.8	42
32	Microstructure and dielectric properties of SrTiO3 ceramics by controlled growth of silica shells on SrTiO3 nanoparticles. Ceramics International, 2017, 43, 7710-7716.	4.8	40
33	Origin of low dielectric loss and giant dielectric response in (Nb+Al) coâ€doped strontium titanate. Journal of the American Ceramic Society, 2018, 101, 5089-5097.	3.8	40
34	Modulating the energy storage performance of NaNbO3-based lead-free ceramics for pulsed power capacitors. Ceramics International, 2020, 46, 13511-13516.	4.8	40
35	Design, fabrication and dielectric properties in core–double shell BaTiO ₃ -based ceramics for MLCC application. RSC Advances, 2015, 5, 8868-8876.	3.6	37
36	Energy storage properties of MgO-doped 0.5Bi0·5Na0·5TiO3-0.5SrTiO3 ceramics. Ceramics International, 2019, 45, 14921-14927.	4.8	37

#	Article	IF	CITATIONS
37	Origin of high dielectric permittivity and low dielectric loss of Sr0.985Ce0.01TiO3 ceramics under different sintering atmospheres. Journal of Alloys and Compounds, 2019, 782, 51-58.	5.5	35
38	Enhanced dielectric breakdown strength and ultra-fast discharge performance of novel SrTiO3 based ceramics system. Journal of Alloys and Compounds, 2020, 830, 154611.	5.5	35
39	Energy Storage Characteristics in Sr _(1-1.5x) Bi _x TiO ₃ Ceramics. Ferroelectrics, 2013, 447, 86-94.	0.6	34
40	Cerium doped strontium titanate with stable high permittivity and low dielectric loss. Journal of Alloys and Compounds, 2019, 772, 1105-1112.	5.5	33
41	Dielectric behaviors of Nb2O5–Co2O3 doped BaTiO3–Bi(Mg1/2Ti1/2)O3 ceramics. Ceramics International, 2012, 38, S45-S48.	4.8	32
42	Effect of oxygen treatment on structure and electrical properties of Mn-doped Ca 0.6 Sr 0.4 TiO 3 ceramics. Journal of the European Ceramic Society, 2018, 38, 2534-2540.	5.7	31
43	Structure and electric properties of sandwich-structured SrTiO3/BiFeO3 thin films for energy storage applications. Journal of Alloys and Compounds, 2019, 781, 378-384.	5.5	31
44	Defect structure and dielectric behavior in SrTi1-x(Zn1/3Nb2/3)xO3 ceramics. Journal of Alloys and Compounds, 2019, 784, 1303-1310.	5.5	31
45	Lead-free relaxor-ferroelectric ceramics for high-energy-storage applications. Journal of Materials Chemistry C, 2020, 8, 8962-8970.	5.5	31
46	MgO-modified Sr0.7Ba0.3Nb2O6 ceramics for energy storage applications. Ceramics International, 2018, 44, 11022-11029.	4.8	30
47	Giant dielectric response in (Nbâ€⁻+â€⁻Zn) co-doped strontium titanate ceramics tailored by atmosphere. Scripta Materialia, 2019, 170, 166-171.	5.2	30
48	Structures and dielectric properties of Sr0.9775Sm0.015TiO3 ceramics sintered in N2. Ceramics International, 2015, 41, 12945-12949.	4.8	27
49	Fabrication, structure and property of BaTiO3-based dielectric ceramics with a multilayer core–shell structure. Scripta Materialia, 2012, 67, 451-454.	5.2	26
50	Enhancement of energy-storage properties of K0.5Na0.5NbO3 modified Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 466-473.	2.2	25
51	Effects of sintering temperature on microstructure and dielectric properties of Sr0.985Ce0.01TiO3 ceramics. Journal of Alloys and Compounds, 2018, 762, 950-956.	5.5	25
52	Dielectric properties and impedance analysis of BaTiO 3 -based ceramics with core-shell structure. Ceramics International, 2017, 43, 8449-8458.	4.8	24
53	Enhanced recoverable energy storage density of Mn-doped Ba0.4Sr0.6TiO3 thin films prepared by spin-coating technique. Journal of Materials Science: Materials in Electronics, 2018, 29, 5814-5819.	2.2	24
54	Unfolding dielectric breakdown effects on energy storage performances of modified (Sr _{0.98} Ca _{0.02})(Ti _{1â€} <scp>_xZ</scp> r _x) Ceramics. International Journal of Applied Ceramic Technology, 2018, 15, 1030-1039.	> 32,/ ⊑ub>	23

#	Article	IF	CITATIONS
55	Ultra-high energy storage density and enhanced dielectric properties in BNT-BT based thin film. Ceramics International, 2021, 47, 23259-23266.	4.8	23
56	Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3. Ceramics International, 2016, 42, 379-387.	4.8	22
57	A novel leadâ€free bismuth magnesium titanate thin films for energy storage applications. Journal of the American Ceramic Society, 2019, 102, 3819-3822.	3.8	22
58	Enhanced energy storage properties of fine-crystalline Ba0.4Sr0.6TiO3 ceramics by coating powders with B2O3â€"Al2O3â€"SiO2. Journal of Alloys and Compounds, 2020, 826, 153891.	5.5	22
59	Preparation of BaTiO3@NiO core-shell nanoparticles with antiferroelectric-like characteristic and high energy storage capability. Journal of the European Ceramic Society, 2021, 41, 4129-4137.	5.7	22
60	Dielectric properties and relaxation behavior of Sm substituted SrTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 4418-4424.	2.2	21
61	Microstructure and dielectric characteristics of Nb2O5 doped BaTiO3-Bi(Znl/2Til/2)O3 ceramics for capacitor applications. Journal of the European Ceramic Society, 2017, 37, 123-128.	5.7	21
62	The role of dielectric permittivity in the energy storage performances of ultrahigh-permittivity (SrxBa1â^'x)(Ti0.85Sn0.15)O3 ceramics. Ceramics International, 2018, 44, 5304-5310.	4.8	21
63	Nano-BaTiO3 phase transition behavior in coated BaTiO3-based dielectric ceramics. Ceramics International, 2019, 45, 7166-7172.	4.8	20
64	Structure and enhanced dielectric temperature stability of BaTiO3-based ceramics by Ca ion B site-doping. Journal of Materiomics, 2021, 7, 295-301.	5.7	20
65	Structures and dielectric properties of (Nb, Zn) co-doped SrTiO3 ceramics at various sintering temperatures. Journal of Materials Science, 2019, 54, 12401-12410.	3.7	19
66	Dielectric and anti-reduction properties of (1-x)BaTiO3-xBi(Zn0.5Y0.5)O2.75 ceramics for BME-MLCC application. Journal of Alloys and Compounds, 2019, 794, 358-364.	5.5	19
67	The microstructure and energy storage properties of Ba0.3Sr0.7TiO3 crystallite thin films. Journal of Alloys and Compounds, 2019, 792, 1013-1020.	5.5	19
68	Defect chemistry and dielectric behavior of Sr0.99Ce0.01Tilâ^'xO3 ceramics with high permittivity. Ceramics International, 2018, 44, 12065-12072.	4.8	18
69	Amorphous/Crystalline Engineering of BaTiO ₃ -Based Thin Films for Energy-Storage Capacitors. ACS Sustainable Chemistry and Engineering, 2022, 10, 1731-1740.	6.7	18
70	X9R BaTiO ₃ â€Based Dielectric Ceramics with Multilayer Core–Shell Structure Produced by Polymerâ€Network Gel Coating Method. Journal of the American Ceramic Society, 2015, 98, 690-693.	3.8	16
71	Simultaneously achieved high energy storage density and efficiency in sol-gel-derived amorphous Mn-doped SrTiO3 thin films. Journal of Alloys and Compounds, 2020, 845, 155636.	5.5	16
72	Superior energy storage BaTiO3-based amorphous dielectric film with polymorphic hexagonal and cubic nanostructures. Chemical Engineering Journal, 2022, 431, 133447.	12.7	16

#	Article	IF	CITATIONS
73	Manganeseâ€Doped BiFeO ₃ â€"BaTiO ₃ Highâ€Temperature Piezoelectric Ceramics: Phase Structures and Defect Mechanism. International Journal of Applied Ceramic Technology, 2016, 13, 549-553.	2.1	14
74	The energy-storage performance and dielectric properties of (0.94-x)BNT-0.06BT-xST thin films prepared by sol–gel method. Journal of Alloys and Compounds, 2021, 860, 158164.	5.5	14
7 5	Tuning the microstructure of BaTiO3@FeO core-shell nanoparticles with low temperatures sintering dense nanocrystalline ceramics for high energy storage capability and stability. Journal of Alloys and Compounds, 2021, 864, 158644.	5.5	14
76	Fine-grained silica-coated barium strontium titanate ceramics with high energy storage. Ceramics International, 2018, 44, 20239-20244.	4.8	13
77	Defect structure evolution and electrical properties of BaTiO 3 â€based ferroelectric ceramics. Journal of the American Ceramic Society, 2020, 103, 5129-5138.	3.8	13
78	Fabrication of BaTiO3@FeO core-shell nanoceramics for dielectric capacitor applications. Scripta Materialia, 2021, 196, 113753.	5.2	13
79	The Role of Microstructure on Microwave Dielectric Properties of (Ba,Sr)TiO ₃ Ceramics. Journal of the American Ceramic Society, 2016, 99, 905-910.	3.8	12
80	Dielectric properties and relaxation behaviors of Ba doped Sr0.97Sm0.02TiO3 ceramics in different sintering atmospheres. Ceramics International, 2016, 42, 16782-16788.	4.8	12
81	Phase and Microstructure Evaluation and Microwave Dielectric Properties of Mg1â^2x Ni x SiO3 Ceramics. Journal of Electronic Materials, 2016, 45, 5133-5139.	2.2	12
82	Structure and dielectric properties of MgO-coated BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 8963-8970.	2.2	12
83	Regulating energy storage performances of 0.85NaNbO3-0.15Bi(Zn2/3Nb1/3)O3 ceramics using BaTiO3. Journal of Materiomics, 2022, 8, 166-173.	5.7	12
84	Microstructure, ferro-piezoelectric and thermal stability of SiO2 modified BiFeO3–BaTiO3 high temperature piezoceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 479-484.	2.2	11
85	Nb-doped BaTiO3–(Na1/4Bi3/4)(Mg1/4Ti3/4)O3 ceramics with X9R high-temperature stable dielectric properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 4204-4210.	2.2	11
86	Anomalous Dielectric Nonlinearity in Niobium and Aluminum Co-doped SrTiO ₃ Ceramics with Giant Permittivity and Low Dielectric Loss. Journal of Physical Chemistry C, 2019, 123, 18142-18149.	3.1	11
87	Structure, dielectric and impedance properties of BaTiO3–Bi(Y0.5Yb0.5)O3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 3215-3222.	2.2	10
88	Synergistic Function via Amorphous and Nanoscale Polarization Heterogeneous Regions in (1â^² <i>x</i>)BaTiO ₃ â€ <i>x</i> Bi(Ni _{0.5} Zr _{0.5})O ₃ Thin Film with Ultrahigh Energy Storage Capability and Stability. Small Methods, 2021, 5, e2100787.	8.6	10
89	Evolution of polarization crystallites in 0.92BaTiO3-0.08Bi(Ni0.5Zr0.5)O3 microcrystal-amorphous composite thin film with high energy storage capability and thermal stability. Chemical Engineering Journal, 2022, 433, 133579.	12.7	10
90	Performance optimization of Mg-rich bismuth-magnesium-titanium thin films for energy storage applications. Journal of the European Ceramic Society, 2020, 40, 1243-1249.	5.7	9

#	Article	IF	CITATIONS
91	Defect chemistry of A site nonstoichiometry and the resulting dielectric behaviors in Sr _x Ti _{0.985} (Nb _{2/3} Zn _{1/3}) _{0.015} O ₃ ceramics. Journal of the American Ceramic Society, 2020, 103, 6298-6307.	3.8	9
92	Defect structure design of TiO2 ceramics with colossal permittivity by doping with Ti metal powder. Ceramics International, 2022, 48, 16723-16729.	4.8	9
93	Novel BiAlO3 dielectric thin films with high energy density. Ceramics International, 2019, 45, 22523-22527.	4.8	8
94	Influence of Co substitution on the phase, microstructure, and microwave dielectric properties of MgSiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 6469-6474.	2.2	8
95	The role of diffusion behavior on the formation and evolution of the coreâ€shell structure in BaTiO ₃ â€based ceramics. Journal of the American Ceramic Society, 2020, 103, 304-314.	3.8	8
96	Abnormal dielectric relaxations and giant permittivity in SrTiO ₃ ceramic prepared by plasma activated sintering. Journal of the American Ceramic Society, 2022, 105, 4143-4151.	3.8	8
97	Manufacture and dielectric properties of X9R Bi-based lead-free multilayer ceramic capacitors with AgPd inner electrodes. Journal of Materials Science: Materials in Electronics, 2016, 27, 6140-6149.	2.2	7
98	Multiscale grain synergistic by microstructure designed hierarchically structured in BaTiO3-based ceramics with enhanced energy storage density and X9R high-temperature dielectrics application. Journal of Materials Science, 2022, 57, 11839-11851.	3.7	7
99	A family of functional oxides of titanosilicates: A2TiSi2O8 (A= Ba, Sr) with temperature insensitive ultrahigh breakdown strength. Journal of the European Ceramic Society, 2020, 40, 3027-3034.	5.7	6
100	Microcrystalline structure modulation and energy storage properties of BaZr0.25Ti0.75O3 thin films. Journal of Alloys and Compounds, 2022, 907, 164236.	5.5	6
101	Sm doped BNT–BZT lead-free ceramic for energy storage applications with broad temperature range. Journal of Materials Science: Materials in Electronics, 2022, 33, 14644-14654.	2.2	6
102	Giant permittivity in Nb-doped SrTiO3 single crystal: Compositional gradient and local structure. Ceramics International, 2022, 48, 29572-29579.	4.8	6
103	Characteristics and structure of Mn-doped (0.6Ââ^'Âx)PMTâ€"0.4PTâ€"xPZ(x = 0.2,0.25) ternary system morphotropic phase boundary. Journal of Materials Science: Materials in Electronics, 2018, 29, 14261-14266.	near 2.2	5
104	A Unique Mechanism for Dielectric-Temperature Stability of BaTiO ₃ -Based Ceramics Using Ba(OH) ₂ /TiO ₂ Suspension. Journal of Physical Chemistry C, 2020, 124, 14089-14098.	3.1	5
105	Significant photostrictive response in leadâ€free Bi _{0.5} Na _{0.5} TiO ₃ ceramics under visible light illumination. Journal of the American Ceramic Society, 2021, 104, 4033-4040.	3.8	5
106	Poorly crystallized Bi(Mg,Zr,Ti)O3 lead-free thin films for energy-storage applications. Ceramics International, 2021, 47, 32357-32363.	4.8	5
107	Defect controlling of BaTiO3@ NiO double hysteresis loop ceramics with enhanced energy storage capability and stability. Journal of the European Ceramic Society, 2022, 42, 2212-2220.	5.7	5
108	High breakdown strength and energy storage density of Er0.02Sr0.97TiO3@MgO2–Al2O3–SiO2 ceramics with core–shell structure sintered in oxygen atmosphere. Journal of Materials Science: Materials in Electronics, 2020, 31, 13408-13414.	2.2	4

#	Article	IF	CITATIONS
109	Dielectric response of 0.85 Ba(Ti0.96Zr0.04)O3–0.15 Bi(Mg0.5Ti0.5)O3 relaxor ferroelectrics under electric field: evolution of PNRs. Journal of Materials Science: Materials in Electronics, 2015, 26, 9146-9151.	2.2	3
110	Preparation and Properties of Epoxy Piezoelectric Vibration Reduction Composites. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 44-49.	1.0	3
111	Improved energy storage properties of La0.33NbO3 modified 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramic system. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	3
112	Selectively designed Fe doping of lead-free BaTiO3 piezoceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 10154-10164.	2.2	3
113	Anomalous dielectric relaxation peak in Nb-doped SrTiO3 single crystals. Ceramics International, 2022, 48, 24725-24732.	4.8	3
114	Mechanism of the giant permittivity in Sm modified SrTiO3 sintered at different atmospheres. Journal of Materials Science: Materials in Electronics, 2018, 29, 11546-11552.	2.2	2
115	Phase, Microstructure, and Microwave Dielectric Properties of (Mg0.95Co0.05)(Ti1â^'xSnx)O3 (0.05â€‰â‰æ€‰xâ€‰â‰æ€‰0.20) Ceramics. Journal of Electronic Materials, 2018, 47, 7380-7385.	2.2	1
116	Effect of Constituent Core-sizes on Microstructure and Dielectric Properties of BaTiO3@(0.6Ba-TiO3-0.4BiAlO3) Core-Shell Material. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 589-597.	1.0	1
117	The influence of processing methods on the dielectric properties of BaTi1-xGdxO3-x/2 - Based materials. Ceramics International, 2021, 47, 24360-24371.	4.8	1
118	Electric property, anti-reduction mechanism of (1Ââ^'Âx)BaTiO3â€"xBiCoO3â€"Mn ceramics. Journal of Materials Research, 2021, 36, 1037-1047.	2.6	1
119	Energy storage performance of silica-coated k0.5Na0.5NbO3-based lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 10121-10130.	2.2	1
120	Reply to comments on `Giant dielectric response in (NbÂ+ÂZn) co-doped strontium titanate ceramics tailored by atmosphere''. Scripta Materialia, 2020, 186, 11-13.	5.2	0
121	Optimized energy storage properties of BaTiO3-based ceramics with enhanced grain boundary effect. Journal of Materials Science: Materials in Electronics, 2021, 32, 14328-14336.	2.2	0
122	Novel Sr4Fe6O13 ferrites and Sr4Fe6O13/CNTs composites for $15 {\rm \^{A}GHz}$ high frequency microwave absorption application. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	0