Tobias Pamminger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7782748/publications.pdf Version: 2024-02-01

TORIAS PAMMINCER

#	Article	IF	CITATIONS
1	Establishing realistic exposure estimates of solitary bee larvae via pollen for use in risk assessment. Integrated Environmental Assessment and Management, 2022, 18, 308-313.	2.9	1
2	Holistic evaluation of longâ€ŧerm earthworm field studies with a fungicide. Integrated Environmental Assessment and Management, 2022, 18, 1399-1413.	2.9	0
3	Multiple stressors interact to impair the performance of bumblebee <i>Bombus terrestris</i> colonies. Journal of Animal Ecology, 2021, 90, 415-431.	2.8	24
4	Extrapolating Acute Contact Bee Sensitivity to Insecticides Based on Body Weight Using a Phylogenetically Informed Interspecies Scaling Framework. Environmental Toxicology and Chemistry, 2021, 40, 2042-2050.	4.3	12
5	Assessment of the Vulnerability to Pesticide Exposures Across Bee Species. Environmental Toxicology and Chemistry, 2021, 40, 2640-2651.	4.3	30
6	Investigating the role of soil mesofauna abundance and biodiversity for organic matter breakdown in arable fields. Integrated Environmental Assessment and Management, 2021, , .	2.9	0
7	Are honeybees suitable surrogates for use in pesticide risk assessment for nonâ€ <i>Apis</i> bees?. Pest Management Science, 2019, 75, 2549-2557.	3.4	41
8	Immunity of leaf-cutting ants and its role in host-parasitoid relationships. Journal of Insect Physiology, 2019, 116, 49-56.	2.0	4
9	The nectar report: quantitative review of nectar sugar concentrations offered by bee visited flowers in agricultural and non-agricultural landscapes. PeerJ, 2019, 7, e6329.	2.0	46
10	The role of juvenile hormone in regulating reproductive physiology and dominance in <i>Dinoponera quadriceps</i> ants. PeerJ, 2019, 7, e6512.	2.0	9
11	Pollen report: quantitative review of pollen crude protein concentrations offered by bee pollinated flowers in agricultural and non-agricultural landscapes. PeerJ, 2019, 7, e7394.	2.0	15
12	Social environment affects the transcriptomic response to bacteria in ant queens. Ecology and Evolution, 2018, 8, 11031-11070.	1.9	6
13	A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Functional Ecology, 2018, 32, 1921-1930.	3.6	23
14	The effects of disturbance threat on leaf-cutting ant colonies: a laboratory study. Insectes Sociaux, 2017, 64, 75-85.	1.2	9
15	Testing the reproductive groundplan hypothesis in ants (Hymenoptera: Formicidae). Evolution; International Journal of Organic Evolution, 2017, 71, 153-159.	2.3	7
16	High temperature and temperature variation undermine future disease susceptibility in a population of the invasive garden ant Lasius neglectus. Die Naturwissenschaften, 2016, 103, 46.	1.6	8
17	Behavioural development, fat reserves and their association with productivity in Lasius flavus founding queens. Die Naturwissenschaften, 2016, 103, 23.	1.6	4
18	The effects of juvenile hormone on Lasius niger reproduction. Journal of Insect Physiology, 2016, 95, 1-7.	2.0	22

Tobias Pamminger

#	Article	IF	CITATIONS
19	The influence of space and time on the evolution of altruistic defence: the case of ant slave rebellion. Journal of Evolutionary Biology, 2016, 29, 874-886.	1.7	3
20	Pleiotropic effects of juvenile hormone in ant queens and the escape from the reproduction–immunocompetence trade-off. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152409.	2.6	33
21	Hygienic food to reduce pathogen risk to bumblebees. Journal of Invertebrate Pathology, 2016, 136, 68-73.	3.2	32
22	Worker Personality and Its Association with Spatially Structured Division of Labor. PLoS ONE, 2014, 9, e79616.	2.5	51
23	Temnothorax pilagens sp. n. – a new slave-makingÂspecies of the tribe Formicoxenini from North America (Hymenoptera, Formicidae). ZooKeys, 2014, 368, 65-77.	1.1	8
24	Oh sister, where art thou? Spatial population structure and the evolution of an altruistic defence trait. Journal of Evolutionary Biology, 2014, 27, 2443-2456.	1.7	11
25	Forewarned is forearmed: aggression and information use determine fitness costs of slave raids. Behavioral Ecology, 2014, 25, 1058-1063.	2.2	19
26	Geographic distribution of the anti-parasite trait "slave rebellion― Evolutionary Ecology, 2013, 27, 39-49.	1.2	11
27	Raiders from the sky: slavemaker founding queens select for aggressive host colonies. Biology Letters, 2012, 8, 748-750.	2.3	21
28	Cold resistance depends on acclimation and behavioral caste in a temperate ant. Die Naturwissenschaften, 2012, 99, 811-819.	1.6	27
29	Two pathways ensuring social harmony. Die Naturwissenschaften, 2012, 99, 627-636.	1.6	19
30	Differential Response of Ant Colonies to Intruders: Attack Strategies Correlate With Potential Threat. Ethology, 2011, 117, 731-739.	1.1	35
31	Increased host aggression as an induced defense against slave-making ants. Behavioral Ecology, 2011, 22, 255-260.	2.2	46