Baoyan Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7782546/publications.pdf

Version: 2024-02-01

10	1.006	759233	888059	
18	1,236 citations	12	17	
papers	citations	h-index	g-index	
18	18	18	1259	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Structures and Photoluminescence Properties of Bis(aromatic amino)â€Based Isomers with Biphenyl as Bridge. ChemistrySelect, 2022, 7, .	1.5	0
2	Highly Efficient Orangeâ€Red Thermally Activated Delayed Fluorescence Compounds Comprising Dual Dicyanoâ€Substituted Pyrazine/Quinoxaline Acceptors. ChemPlusChem, 2021, 86, 95-102.	2.8	2
3	Highly efficient full-fluorescence organic light-emitting diodes with exciplex cohosts. Organic Electronics, 2021, 88, 106004.	2.6	4
4	Highly Efficient Electrofluorescence Material Based on Pure Organic Phosphor Sensitization**. Angewandte Chemie, 2021, 133, 15463-15467.	2.0	2
5	Highly Efficient Electrofluorescence Material Based on Pure Organic Phosphor Sensitization**. Angewandte Chemie - International Edition, 2021, 60, 15335-15339.	13.8	40
6	High-performance non-doped pure-blue electroluminescent device based on bisphenanthroimidazole derivative with twisted donor-acceptor structure. Organic Electronics, 2021, 94, 106171.	2.6	1
7	Molecularâ€Structure and Deviceâ€Configuration Optimizations toward Highly Efficient Green Electroluminescence with Narrowband Emission and High Color Purity. Advanced Optical Materials, 2020, 8, 1902142.	7.3	218
8	Benzimidazole–triazine based exciplex films as emitters and hosts to construct highly efficient OLEDs with a small efficiency roll-off. Journal of Materials Chemistry C, 2020, 8, 2700-2708.	5.5	27
9	Achieving Highâ€Performance Pureâ€Red Electrophosphorescent Iridium(III) Complexes Based on Optimizing Ancillary Ligands. Chemistry - A European Journal, 2020, 26, 4410-4418.	3.3	11
10	Construction of Efficient Deep-Red/Near-Infrared Emitter Based on a Large π-Conjugated Acceptor and Delayed Fluorescence OLEDs with External Quantum Efficiency of over 20%. Journal of Physical Chemistry C, 2019, 123, 18585-18592.	3.1	70
11	Purely Organic Phosphorescence Emitter-Based Efficient Electroluminescence Devices. Journal of Physical Chemistry Letters, 2019, 10, 5983-5988.	4.6	76
12	Exciplex-Based Electroluminescence: Over 21% External Quantum Efficiency and Approaching 100 lm/W Power Efficiency. Journal of Physical Chemistry Letters, 2019, 10, 2811-2816.	4.6	46
13	An Organic Emitter Displaying Dual Emissions and Efficient Delayed Fluorescence White OLEDs. Advanced Optical Materials, 2019, 7, 1801667.	7.3	28
14	Deepâ€Red to Nearâ€Infrared Thermally Activated Delayed Fluorescence in Organic Solid Films and Electroluminescent Devices. Angewandte Chemie - International Edition, 2017, 56, 11525-11529.	13.8	293
15	Deepâ€Red to Nearâ€Infrared Thermally Activated Delayed Fluorescence in Organic Solid Films and Electroluminescent Devices. Angewandte Chemie, 2017, 129, 11683-11687.	2.0	47
16	Induction of Strong Longâ€Lived Roomâ€Temperature Phosphorescence of <i>N</i> â€Phenylâ€2â€naphthylamine Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. Angewandte Chemie - International Edition, 2016, 55, 15589-15593.	e 13.8	265
17	Induction of Strong Longâ€Lived Roomâ€Temperature Phosphorescence of <i>N</i> â€Phenylâ€2â€naphthylamine Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. Angewandte Chemie, 2016, 128, 15818-15822.	e 2.0	71
18	High-contrast and reversible mechanochromic luminescence of a D–π–A compound with a twisted molecular conformation. RSC Advances, 2015, 5, 71903-71910.	3.6	35