
Shalei Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7782198/publications.pdf Version: 2024-02-01

SHALE SONC

#	Article	IF	CITATIONS
1	Multichannel Interconnection Decomposition for Hyperspectral LiDAR Waveforms Detected From Over 500 m. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	2.7	9
2	Target Classification of Similar Spatial Characteristics in Complex Urban Areas by Using Multispectral LiDAR. Remote Sensing, 2022, 14, 238.	1.8	28
3	Using HSI Color Space to Improve the Multispectral Lidar Classification Error Caused by Measurement Geometry. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 3567-3579.	2.7	15
4	Application of Hyperspectral LiDAR on 3-D Chlorophyll-Nitrogen Mapping of Rohdea Japonica in Laboratory. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 9667-9679.	2.3	10
5	Land Cover Classification with Multispectral LiDAR Based on Multi-Scale Spatial and Spectral Feature Selection. Remote Sensing, 2021, 13, 4118.	1.8	16
6	Novel Combined Spectral Indices Derived from Hyperspectral and Laser-Induced Fluorescence LiDAR Spectra for Leaf Nitrogen Contents Estimation of Rice. Remote Sensing, 2020, 12, 185.	1.8	5
7	A new waveform decomposition method for multispectral LiDAR. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149, 40-49.	4.9	32
8	Analyzing the Effect of Fluorescence Characteristics on Leaf Nitrogen Concentration Estimation. Remote Sensing, 2018, 10, 1402.	1.8	11
9	The application of time decay characteristics of laserâ€induced fluorescence in the classification of vegetation. Luminescence, 2017, 32, 17-21.	1.5	0
10	Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer. Scientific Reports, 2017, 7, 40362.	1.6	36
11	Corrections to "A Combined Rotational Raman-Rayleigh Lidar for Atmospheric Temperature Measurements Over 5–80 km With Self-Calibration―[Dec 16 7055-7065]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 1222-1222.	2.7	0
12	The characterization of plant species using firstâ€derivative fluorescence spectra. Luminescence, 2017, 32, 348-352.	1.5	1
13	Multispectral LiDAR Point Cloud Classification: A Two-Step Approach. Remote Sensing, 2017, 9, 373.	1.8	43
14	Estimating Rice Leaf Nitrogen Concentration: Influence of Regression Algorithms Based on Passive and Active Leaf Reflectance. Remote Sensing, 2017, 9, 951.	1.8	49
15	Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra. Optics Express, 2016, 24, 19354.	1.7	12
16	Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice. Scientific Reports, 2016, 6, 28787.	1.6	23
17	A Combined Rotational Raman–Rayleigh Lidar for Atmospheric Temperature Measurements Over 5–80 km With Self-Calibration. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 7055-7065.	2.7	12
18	Joint observation results of Na layer and ionosphere in Wuhan during the Total Solar Eclipse. Science China Earth Sciences, 2016, 59, 418-424.	2.3	4

SHALEI SONG

#	Article	IF	CITATIONS
19	Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR. International Journal of Applied Earth Observation and Geoinformation, 2016, 44, 136-143.	1.4	84
20	Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification. Sensors, 2015, 15, 21989-22002.	2.1	41
21	Improving Backscatter Intensity Calibration for Multispectral LiDAR. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 1421-1425.	1.4	33
22	Double sodium layers observation over Beijing, China. Geophysical Research Letters, 2012, 39, .	1.5	40
23	Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66, 672-682.	4.9	87
24	Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar. Meteorology and Atmospheric Physics, 2011, 113, 89-97.	0.9	17