Chao Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7781969/chao-zhang-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

121	5,715	42	72
papers	citations	h-index	g-index
130	6,903 ext. citations	8.4	6.22
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
121	Ultrathin Polypyrrole Layers Boosting MoO as Both Cathode and Anode Materials for a 2.0 V High-Voltage Aqueous Supercapacitor ACS Applied Materials & amp; Interfaces, 2022,	9.5	4
120	Thermo-spun reaction encapsulation fabrication of environment-stable and knittable fibrous ionic conductors with large elasticity and high fatigue resistance. <i>Chemical Engineering Journal</i> , 2022 , 435, 134826	14.7	1
119	3D reactive printing of polyaniline hybrid hydrogel microlattices with large stretchability and high fatigue resistance for wearable pressure sensors. <i>Composites Science and Technology</i> , 2022 , 220, 10926.	3 ^{8.6}	2
118	Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. <i>Nano Energy</i> , 2022 , 97, 107160	17.1	6
117	Multi-heteroatom-doped hollow carbon nanocages from ZIF-8@CTP nanocomposites as high-performance anodes for sodium-ion batteries. <i>Composites Communications</i> , 2022 , 32, 101116	6.7	3
116	Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. <i>Chemical Communications</i> , 2021 ,	5.8	16
115	3D Printed, Solid-State Conductive Ionoelastomer as a Generic Building Block for Tactile Applications. <i>Advanced Materials</i> , 2021 , e2105996	24	7
114	Template-free construction of hollow mesoporous carbon spheres from a covalent triazine framework for enhanced oxygen electroreduction. <i>Journal of Colloid and Interface Science</i> , 2021 ,	9.3	6
113	Highly Stretchable, Fast Self-Healing, and Waterproof Fluorinated Copolymer Ionogels with Selectively Enriched Ionic Liquids for Human-Motion Detection. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 49358-49368	9.5	14
112	Compressible and robust PANI sponge anchored with erected MXene flakes for human motion detection. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 151, 106671	8.4	9
111	Molten salt-confined pyrolysis towards carbon nanotube-backboned microporous carbon for high-energy-density and durable supercapacitor electrodes. <i>Nanotechnology</i> , 2021 , 32, 095605	3.4	4
110	Ultrasound-Triggered Assembly of Covalent Triazine Framework for Synthesizing Heteroatom-Doped Carbon Nanoflowers Boosting Metal-Free Bifunctional Electrocatalysis. <i>ACS Applied Materials & Material</i>	9.5	22
109	Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. <i>Composites Communications</i> , 2021 , 24, 100677	6.7	18
108	Polyaniline-decorated 3D carbon porous network with excellent electrolyte wettability and high energy density for supercapacitors. <i>Composites Communications</i> , 2021 , 24, 100610	6.7	9
107	Highly Stretchable and Reconfigurable Ionogels with Unprecedented Thermoplasticity and Ultrafast Self-Healability Enabled by Gradient-Responsive Networks. <i>Macromolecules</i> , 2021 , 54, 3832-38	3445	15
106	Dense Hydrogen-Bonding Network Boosts Ionic Conductive Hydrogels with Extremely High Toughness, Rapid Self-Recovery, and Autonomous Adhesion for Human-Motion Detection. <i>Research</i> , 2021 , 2021, 9761625	7.8	14
105	Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. <i>Chemical Engineering Journal</i> , 2021 , 411, 128506	14.7	43

(2020-2021)

104	Wet-spinning of ionic liquid@elastomer coaxial fibers with high stretchability and wide temperature resistance for strain sensors. <i>Composites Communications</i> , 2021 , 25, 100693	6.7	9
103	Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. <i>Chemical Engineering Journal</i> , 2021 , 420, 127637	14.7	20
102	Superelastic, Fatigue-Resistant, and Flame-Retardant Spongy Conductor for Human Motion Detection against a Harsh High-Temperature Condition. <i>ACS Applied Materials & Condition</i> , 13, 7580-7591	9.5	8
101	Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. <i>Composites Part B: Engineering</i> , 2021 , 217, 108901	10	20
100	Polyimide Nanofiber-Reinforced TiCT Aerogel with "Lamella-Pillar" Microporosity for High-Performance Piezoresistive Strain Sensing and Electromagnetic Wave Absorption. <i>ACS Applied Materials & Mater</i>	9.5	18
99	Automatically Modulated Thermoresponsive Film Based on a Phase-Changing Copolymer. <i>Chemistry of Materials</i> , 2021 , 33, 7232-7241	9.6	4
98	Ultra-highly stretchable and anisotropic SEBS/F127 fiber films equipped with an adaptive deformable carbon nanotube layer for dual-mode strain sensing. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 18294-18305	13	14
97	Dopamine-Triggered Hydrogels with High Transparency, Self-Adhesion, and Thermoresponse as Skinlike Sensors. <i>ACS Nano</i> , 2021 , 15, 1785-1794	16.7	63
96	Metallogel-derived 3D porous carbon nanosheet composites as an electrocatalyst for oxygen reduction reaction. <i>Composites Communications</i> , 2020 , 20, 100376	6.7	15
95	3D honeycombed cobalt, nitrogen co-doped carbon nanosheets via hypersaline-protected pyrolysis towards efficient oxygen reduction. <i>Nanotechnology</i> , 2020 , 31, 364003	3.4	7
94	Polyaniline engineering defect-induced nitrogen doped carbon-supported Co3O4 hybrid composite as a high-efficiency electrocatalyst for oxygen evolution reaction. <i>Applied Surface Science</i> , 2020 , 526, 146626	6.7	11
93	Nitrogen-doped hollow carbon nanoflowers from a preformed covalent triazine framework for metal-free bifunctional electrocatalysis. <i>Nanoscale</i> , 2020 , 12, 14441-14447	7.7	20
92	Conducting Polymer-Based Composite Materials for Therapeutic Implantations: From Advanced Drug Delivery System to Minimally Invasive Electronics. <i>International Journal of Polymer Science</i> , 2020 , 2020, 1-16	2.4	8
91	Emerging Dual-Channel Transition-Metal-Oxide Quasiaerogels by Self-Embedded Templating. <i>Advanced Functional Materials</i> , 2020 , 30, 2000024	15.6	25
90	Fluorine and Nitrogen Dual-Doped Porous Carbon Nanosheet-Enabled Compact Electrode Structure for High Volumetric Energy Storage. <i>ACS Applied Energy Materials</i> , 2020 , 3, 4949-4957	6.1	19
89	Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. <i>Nature Communications</i> , 2020 , 11, 62	17.4	98
88	Metal-Free Multi-Heteroatom-Doped Carbon Bifunctional Electrocatalysts Derived from a Covalent Triazine Polymer. <i>Small</i> , 2020 , 16, e2004342	11	40
87	Encapsulation of Co-based nanoparticle in N-doped graphitic carbon for efficient oxygen reduction reaction. <i>Carbon</i> , 2020 , 156, 31-37	10.4	21

86	2D nanosheet-constructed hybrid nanofillers for polymer nanocomposites with synergistic dispersion and function. <i>APL Materials</i> , 2019 , 7, 080904	5.7	10
85	Assembly of 2D graphene sheets and 3D carbon nanospheres into flexible composite electrodes for high-performance supercapacitors. <i>Composites Communications</i> , 2019 , 12, 117-122	6.7	16
84	Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal b rganic framework for tri-functional ORR, OER and HER electrocatalysis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3664-3672	13	154
83	Nitrogen Boosts Defective Vanadium Oxide from Semiconducting to Metallic Merit. <i>Small</i> , 2019 , 15, e ²	19@⊋58	39
82	Nitrogen-Doped Carbon Polyhedra Nanopapers: An Advanced Binder-Free Electrode for High-Performance Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5240-5248	8.3	21
81	Confined sulfidation strategy toward cobalt sulfide@nitrogen, sulfur co-doped carbon core-shell nanocomposites for lithium-ion battery anodes. <i>Composites Communications</i> , 2019 , 15, 162-167	6.7	19
8o	Self-Templated Conversion of Metallogel into Heterostructured TMP@Carbon Quasiaerogels Boosting Bifunctional Electrocatalysis. <i>Advanced Functional Materials</i> , 2019 , 29, 1903660	15.6	66
79	Solvent-Exchange Strategy toward Aqueous Dispersible MoS Nanosheets and Their Nitrogen-Rich Carbon Sphere Nanocomposites for Efficient Lithium/Sodium Ion Storage. <i>Small</i> , 2019 , 15, e1903816	11	24
78	Molecular-engineered hybrid carbon nanofillers for thermoplastic polyurethane nanocomposites with high mechanical strength and toughness. <i>Composites Part B: Engineering</i> , 2019 , 177, 107381	10	22
77	Stereoselectively Assembled Metal Organic Framework (MOF) Host for Catalytic Synthesis of Carbon Hybrids for Alkaline-Metal-Ion Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 5361-5365	3.6	21
76	Stereoselectively Assembled Metal-Organic Framework (MOF) Host for Catalytic Synthesis of Carbon Hybrids for Alkaline-Metal-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5307-5311	16.4	53
75	Coaxial-cable hierarchical tubular MnO@FeO@C heterostructures as advanced anodes for lithium-ion batteries. <i>Nanotechnology</i> , 2019 , 30, 094002	3.4	3
74	Synthesis and electrochemical performance of core-shell NiCo2S4@nitrogen, sulfur dual-doped carbon composites via confined sulfidation strategy in a polydopamine nanoreactor. <i>Composites Communications</i> , 2019 , 12, 74-79	6.7	7
73	Reaction Packaging CoSe Nanoparticles in N-Doped Carbon Polyhedra with Bifunctionality for Overall Water Splitting. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 3372-3381	9.5	49
72	Cobalt, Nitrogen-Doped Porous Carbon Nanosheet-Assembled Flowers from Metal-Coordinated Covalent Organic Polymers for Efficient Oxygen Reduction. <i>ACS Applied Materials & Company Com</i>	9.5	36
71	Efficient Hydrogen Production on a 3D Flexible Heterojunction Material. <i>Advanced Materials</i> , 2018 , 30, e1707082	24	124
70	Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review. <i>Composites Communications</i> , 2018 , 8, 83-91	6.7	87
69	High-temperature solvent-free sulfidation of MoO confined in a polypyrrole shell: MoS nanosheets encapsulated in a nitrogen, sulfur dual-doped carbon nanoprism for efficient lithium storage. Nanoscale, 2018, 10, 7536-7543	7.7	30

68	Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries. <i>Nano Research</i> , 2018 , 11, 6155-6166	10	26
67	Sandwich-structured composite separators with an anisotropic pore architecture for highly safe Li-ion batteries. <i>Composites Communications</i> , 2018 , 8, 46-51	6.7	18
66	Poly (EGlutamic Acid) Promotes Enhanced Dechlorination of p-Chlorophenol by Fe-Pd Nanoparticles. <i>Nanoscale Research Letters</i> , 2018 , 13, 219	5	6
65	A biomimetic Setaria viridis-inspired electrode with polyaniline nanowire arrays aligned on MoO3@polypyrrole coreEhell nanobelts. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13428-13437	13	34
64	Carbon Nanotube with Vertical 2D Molybdenum Sulphoselenide Nanosheet Arrays for Boosting Electrocatalytic Hydrogen Evolution. <i>ACS Applied Energy Materials</i> , 2018 , 1, 7035-7045	6.1	20
63	Plasma-Assisted Synthesis of NiSe Ultrathin Porous Nanosheets with Selenium Vacancies for Supercapacitor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 41861-41865	9.5	59
62	Palladium/Graphitic Carbon Nitride (g-C N) Stabilized Emulsion Microreactor as a Store for Hydrogen from Ammonia Borane for Use in Alkene Hydrogenation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 14857-14861	16.4	85
61	Hierarchical Nanostructures of Nitrogen-Doped Porous Carbon Polyhedrons Confined in Carbon Nanosheets for High-Performance Supercapacitors. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2018 , 10, 19871-19880	9.5	41
60	Self-Assembled Mesoporous Carbon Nitride with Tunable Texture for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8291-8299	8.3	32
59	General solution-processed formation of porous transition-metal oxides on exfoliated molybdenum disulfides for high-performance asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 11236-11245	13	75
58	Supramolecular Assembly of 1D Pristine Carbon Nanotubes and 2D Graphene Oxides into Macroscopic All-Carbon Hybrid Sponges for High-Energy-Density Supercapacitors. <i>ChemNanoMat</i> , 2017 , 3, 447-453	3.5	10
57	From Millimeter to Subnanometer: Vapor-Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8426-8430	16.4	66
56	Interlayer-Expanded Metal Sulfides on Graphene Triggered by a Molecularly Self-Promoting Process for Enhanced Lithium Ion Storage. <i>ACS Applied Materials & Applied Ma</i>	₃ 9.5	26
55	Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19997-20004	13	41
54	MoSe Nanosheet Array with Layered MoS Heterostructures for Superior Hydrogen Evolution and Lithium Storage Performance. <i>ACS Applied Materials & District Ma</i>	9.5	73
53	Hybridizing Carbon Nitride Colloids with a Shell of Water-Soluble Conjugated Polymers for Tunable Full-Color Emission and Synergistic Cell Imaging. <i>ACS Applied Materials & Description of Materials & Descriptio</i>	-435974	20
52	Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 251-268	7.8	122
51	Constructing a B izza-LikelMoS2/Polypyrrole/Polyaniline Ternary Architecture with High Energy Density and Superior Cycling Stability for Supercapacitors. <i>Advanced Materials Interfaces</i> , 2016 , 3, 16006	5 6 56	36

50	Self-Templated Growth of Vertically Aligned 2H-1T MoS for Efficient Electrocatalytic Hydrogen Evolution. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 31702-31708	9.5	108
49	Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers. <i>Advanced Functional Materials</i> , 2016 , 26, 8255-8265	15.6	55
48	Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode. <i>Nano Research</i> , 2016 , 9, 2938-2949	10	46
47	Supercapacitive energy storage performance of molybdenum disulfide nanosheets wrapped with microporous carbons. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3097-3102	13	65
46	Graphene/carbon aerogels derived from graphene crosslinked polyimide as electrode materials for supercapacitors. <i>RSC Advances</i> , 2015 , 5, 1301-1308	3.7	74
45	Hierarchically Organized Nanocomposites Derived from Low-dimensional Nanomaterials for Efficient Removal of Organic Pollutants. <i>Current Organic Chemistry</i> , 2015 , 19, 498-511	1.7	5
44	One-step synthesis of graphene nanoribbon-MnO[hybrids and their all-solid-state asymmetric supercapacitors. <i>Nanoscale</i> , 2014 , 6, 4233-42	7.7	166
43	Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids. <i>Composites Science and Technology</i> , 2014 , 91, 98-103	8.6	58
42	Carbon Nanotube-Based Hybrid Materials and Their Polymer Composites 2014 , 239-277		1
41	Surface modifications of halloysite nanotubes with superparamagnetic Fe3O4 nanoparticles and carbonaceous layers for efficient adsorption of dyes in water treatment. <i>Chemical Research in Chinese Universities</i> , 2014 , 30, 971-977	2.2	29
40	Supercritical carbon dioxide assisted deposition of Fe(3)O(4) nanoparticles on hierarchical porous carbon and their lithium-storage performance. <i>Chemistry - A European Journal</i> , 2014 , 20, 4308-15	4.8	45
39	Blood Ties: Co3O4 Decorated Blood Derived Carbon as a Superior Bifunctional Electrocatalyst. <i>Advanced Functional Materials</i> , 2014 , 24, 7655-7665	15.6	105
38	Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 7584-91	9.5	111
37	Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. <i>Nanoscale</i> , 2013 , 5, 7312-20	7.7	161
36	Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution. <i>Electrochimica Acta</i> , 2013 , 109, 269-275	6.7	113
35	Nonenzymatic sensor for glucose based on a glassy carbon electrode modified with Ni(OH)2 nanoparticles grown on a film of molybdenum sulfide. <i>Mikrochimica Acta</i> , 2013 , 180, 1127-1134	5.8	41
34	Magnetic nanomaterial derived from graphene oxide/layered double hydroxide hybrid for efficient removal of methyl orange from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2013 , 408, 25-32	9.3	98
33	One-pot hydrothermal synthesis and reusable oil-adsorbing properties of porous carbonaceous monoliths using multi-walled carbon nanotubes as templates. <i>RSC Advances</i> , 2013 , 3, 14938	3.7	13

(2011-2013)

32	All-carbon composite paper as a flexible conducting substrate for the direct growth of polyaniline particles and its applications in supercapacitors. <i>Polymer Chemistry</i> , 2013 , 4, 5785	4.9	29
31	Carbon nanotubes bridged with graphene nanoribbons and their use in high-efficiency dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3996-9	16.4	177
30	Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. <i>ACS Applied Materials & Description of the Supercapacity of the</i>	9.5	288
29	One-step hybridization of graphene nanoribbons with carbon nanotubes and its strong-yet-ductile thermoplastic polyurethane composites. <i>Polymer</i> , 2013 , 54, 3124-3130	3.9	49
28	Synthesis of the multi-walled carbon nanotubes-COOH/graphene/gold nanoparticles nanocomposite for simple determination of Bilirubin in human blood serum. <i>Sensors and Actuators B: Chemical</i> , 2013 , 185, 337-344	8.5	56
27	Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches. <i>Journal of Materials Research</i> , 2013 , 28, 611-619	2.5	33
26	A review on hybridization modification of graphene and its polymer nanocomposites. <i>Science Bulletin</i> , 2012 , 57, 3010-3021		42
25	Immobilization of Co-Al layered double hydroxides on graphene oxide nanosheets: growth mechanism and supercapacitor studies. <i>ACS Applied Materials & Discrete Studies and Supercapacitor Studies and Supercapacitor Studies are also applied Materials and Supercapacitor and Supercapacitor Studies are also applied Materials and Supercapacitor and</i>	9.5	171
24	Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 25108		195
23	Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinyl alcohol) composites. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24	127-243	4 ¹⁵⁶
22	Polymorphism of electrospun polyvinylidene difluoride/carbon nanotube (CNT) nanocomposites: Synergistic effects of CNT surface chemistry, extensional force and supercritical carbon dioxide treatment. <i>Polymer</i> , 2012 , 53, 5097-5102	3.9	19
21	A novel approach for transferring water-dispersible graphene nanosheets into organic media. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11748		23
20	Functionalization of graphene and grafting of temperature-responsive surfaces from graphene by ATRP In water I Journal of Nanoparticle Research, 2012, 14, 1	2.3	35
19	The preparation of graphene hybrid films decorated with poly[2-methoxy-5-(2?-ethyl-hexyloxy)-1,4-phenylene vinylene] particles prepared by non-solvent induced precipitation. <i>Carbon</i> , 2012 , 50, 216-224	10.4	26
18	Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property. <i>ACS Applied Materials & Samp; Interfaces</i> , 2011 , 3, 2779-85	9.5	172
17	Water dispersible graphene noncovalently functionalized with tryptophan and its poly(vinyl alcohol) nanocomposite. <i>Composites Part B: Engineering</i> , 2011 , 42, 2130-2135	10	117
16	Aqueous stabilization of graphene sheets using exfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films via vacuum-assisted self-assembly. <i>Journal of Materials Chemistry</i> , 2011 , 21, 18011		70
15	Dramatically enhanced mechanical performance of nylon-6 magnetic composites with nanostructured hybrid one-dimensional carbon nanotube-two-dimensional clay nanoplatelet heterostructures. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 3392-9	3.4	80

14	Structural characterization, thermal and mechanical properties of polyurethane/CoAl layered double hydroxide nanocomposites prepared via in situ polymerization. <i>Composites Science and Technology</i> , 2011 , 71, 791-796	8.6	65
13	Preparation and characterization of organic-inorganic hybrid nanomaterials using polyurethane-b-poly[3-(trimethoxysilyl) propyl methacrylate] via RAFT polymerization. <i>EXPRESS Polymer Letters</i> , 2010 , 4, 17-25	3.4	19
12	Graphene Oxide-Assisted Dispersion of Pristine Multiwalled Carbon Nanotubes in Aqueous Media. Journal of Physical Chemistry C, 2010 , 114, 11435-11440	3.8	272
11	Facile fabrication of polystyrene/carbon nanotube composite nanospheres with core-shell structure via self-assembly. <i>Polymer</i> , 2010 , 51, 3715-3721	3.9	20
10	Layer-by-layer self-assembly of polyimide precursor/layered double hydroxide ultrathin films. <i>Thin Solid Films</i> , 2010 , 518, 7081-7085	2.2	20
9	Preparation, morphology, and biolabeling of fluorescent nanoparticles based on conjugated polymers by emulsion polymerization. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 4867-4874	2.5	17
8	Multiwalled carbon nanotube nucleated crystallization behavior of biodegradable poly(butylene succinate) nanocomposites. <i>Journal of Applied Polymer Science</i> , 2009 , 111, 2938-2945	2.9	36
7	Synthesis, characterization and self-assembly behavior in water as fluorescent sensors of cationic water-soluble conjugated polyfluorene-b-poly(N-isopropylacrylamide) diblock copolymers. <i>Polymer</i> , 2009 , 50, 1236-1245	3.9	23
6	Preparation and Characterization of Polyurethane/Multiwalled Carbon Nanotube Composites. <i>Polymers and Polymer Composites</i> , 2008 , 16, 501-507	0.8	22
5	Spatial Adjustment Strategy to Improve the Sensitivity of Ionogels for Flexible Sensors. Macromolecular Chemistry and Physics, 2200035	2.6	1
4	Cryo-spun encapsulation of polyaniline-based conducting hydrogels with high sensitivity, wide-range linearity, and environmental stability for fibrous strain sensors. <i>Journal of Polymer Science</i> ,	2.4	1
3	Compressible and Lightweight MXene/Carbon Nanofiber Aerogel with <code>[layer-Strut]Bracing</code> Microscopic Architecture for Efficient Energy Storage. <i>Advanced Fiber Materials</i> ,1	10.9	2
2	Highly stretchable and self-healable ionogels with multiple sensitivity towards compression, strain and moisture for skin-inspired ionic sensors. <i>Science China Materials</i> ,1	7.1	3
1	A Waterproof Ion-Conducting Fluorinated Elastomer with 6000% Stretchability, Superior Ionic	15.6	10