Chao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7781969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene-Wrapped Polyaniline Hollow Spheres As Novel Hybrid Electrode Materials for Supercapacitor Applications. ACS Applied Materials & Interfaces, 2013, 5, 3382-3391.	4.0	310
2	Graphene Oxide-Assisted Dispersion of Pristine Multiwalled Carbon Nanotubes in Aqueous Media. Journal of Physical Chemistry C, 2010, 114, 11435-11440.	1.5	307
3	Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal–organic framework for tri-functional ORR, OER and HER electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 3664-3672.	5.2	243
4	Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes. Journal of Materials Chemistry, 2012, 22, 25108.	6.7	214
5	Dopamine-Triggered Hydrogels with High Transparency, Self-Adhesion, and Thermoresponse as Skinlike Sensors. ACS Nano, 2021, 15, 1785-1794.	7.3	190
6	Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nature Communications, 2020, 11, 62.	5.8	189
7	Immobilization of Co–Al Layered Double Hydroxides on Graphene Oxide Nanosheets: Growth Mechanism and Supercapacitor Studies. ACS Applied Materials & Interfaces, 2012, 4, 2242-2249.	4.0	186
8	One-step synthesis of graphene nanoribbon–MnO2 hybrids and their all-solid-state asymmetric supercapacitors. Nanoscale, 2014, 6, 4233.	2.8	186
9	Carbon Nanotubes Bridged with Graphene Nanoribbons and Their Use in Highâ€Efficiency Dyeâ€ S ensitized Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 3996-3999.	7.2	184
10	Facile Fabrication of Functionalized Graphene Sheets (FGS)/ZnO Nanocomposites with Photocatalytic Property. ACS Applied Materials & Interfaces, 2011, 3, 2779-2785.	4.0	183
11	Hierarchical composites of polyaniline–graphene nanoribbons–carbon nanotubes as electrode materials in all-solid-state supercapacitors. Nanoscale, 2013, 5, 7312.	2.8	176
12	Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinyl alcohol) composites. Journal of Materials Chemistry, 2012, 22, 2427-2434.	6.7	168
13	Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. Materials Chemistry Frontiers, 2017, 1, 251-268.	3.2	160
14	Efficient Hydrogen Production on a 3D Flexible Heterojunction Material. Advanced Materials, 2018, 30, e1707082.	11.1	158
15	Palladium/Graphitic Carbon Nitride (g ₃ N ₄) Stabilized Emulsion Microreactor as a Store for Hydrogen from Ammonia Borane for Use in Alkene Hydrogenation. Angewandte Chemie - International Edition, 2018, 57, 14857-14861.	7.2	135
16	Self-Templated Growth of Vertically Aligned 2H-1T MoS ₂ for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2016, 8, 31702-31708.	4.0	133
17	Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review. Composites Communications, 2018, 8, 83-91.	3.3	133
18	Magnetic nanomaterial derived from graphene oxide/layered double hydroxide hybrid for efficient removal of methyl orange from aqueous solution. Journal of Colloid and Interface Science, 2013, 408, 25-32.	5.0	127

Chao Zhang

#	Article	IF	CITATIONS
19	Ni-Doped Graphene/Carbon Cryogels and Their Applications As Versatile Sorbents for Water Purification. ACS Applied Materials & Interfaces, 2013, 5, 7584-7591.	4.0	126
20	Water dispersible graphene noncovalently functionalized with tryptophan and its poly(vinyl alcohol) nanocomposite. Composites Part B: Engineering, 2011, 42, 2130-2135.	5.9	125
21	Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution. Electrochimica Acta, 2013, 109, 269-275.	2.6	125
22	Metalâ€Free Multiâ€Heteroatomâ€Đoped Carbon Bifunctional Electrocatalysts Derived from a Covalent Triazine Polymer. Small, 2020, 16, e2004342.	5.2	117
23	Blood Ties: Co ₃ O ₄ Decorated Blood Derived Carbon as a Superior Bifunctional Electrocatalyst. Advanced Functional Materials, 2014, 24, 7655-7665.	7.8	113
24	Plasma-Assisted Synthesis of NiSe ₂ Ultrathin Porous Nanosheets with Selenium Vacancies for Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 41861-41865.	4.0	104
25	MoSe ₂ Nanosheet Array with Layered MoS ₂ Heterostructures for Superior Hydrogen Evolution and Lithium Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 44550-44559.	4.0	96
26	Graphene/carbon aerogels derived from graphene crosslinked polyimide as electrode materials for supercapacitors. RSC Advances, 2015, 5, 1301-1308.	1.7	94
27	Selfâ€Templated Conversion of Metallogel into Heterostructured TMP@Carbon Quasiaerogels Boosting Bifunctional Electrocatalysis. Advanced Functional Materials, 2019, 29, 1903660.	7.8	93
28	From Millimeter to Subnanometer: Vapor–Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. Angewandte Chemie - International Edition, 2017, 56, 8426-8430.	7.2	90
29	Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. Chemical Engineering Journal, 2021, 411, 128506.	6.6	88
30	Dramatically Enhanced Mechanical Performance of Nylon-6 Magnetic Composites with Nanostructured Hybrid One-Dimensional Carbon Nanotubeâ^'Two-Dimensional Clay Nanoplatelet Heterostructures. Journal of Physical Chemistry B, 2011, 115, 3392-3399.	1.2	87
31	General solution-processed formation of porous transition-metal oxides on exfoliated molybdenum disulfides for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 11236-11245.	5.2	86
32	Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. Chemical Communications, 2021, 58, 185-207.	2.2	81
33	Stereoselectively Assembled Metal–Organic Framework (MOF) Host for Catalytic Synthesis of Carbon Hybrids for Alkalineâ€Metalâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 5307-5311.	7.2	79
34	Aqueous stabilization of graphene sheets using exfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films via vacuum-assisted self-assembly. Journal of Materials Chemistry, 2011, 21, 18011.	6.7	77
35	Polyimide Nanofiber-Reinforced Ti ₃ C ₂ T _{<i>x</i>} Aerogel with "Lamella-Pillar―Microporosity for High-Performance Piezoresistive Strain Sensing and Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2021, 13, 47134-47146.	4.0	76
36	Structural characterization, thermal and mechanical properties of polyurethane/CoAl layered double hydroxide nanocomposites prepared via in situ polymerization. Composites Science and Technology, 2011, 71, 791-796.	3.8	73

#	Article	IF	CITATIONS
37	Ultrasound-Triggered Assembly of Covalent Triazine Framework for Synthesizing Heteroatom-Doped Carbon Nanoflowers Boosting Metal-Free Bifunctional Electrocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 13328-13337.	4.0	71
38	Supercapacitive energy storage performance of molybdenum disulfide nanosheets wrapped with microporous carbons. Journal of Materials Chemistry A, 2015, 3, 3097-3102.	5.2	70
39	Reaction Packaging CoSe ₂ Nanoparticles in N-Doped Carbon Polyhedra with Bifunctionality for Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 3372-3381.	4.0	70
40	Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers. Advanced Functional Materials, 2016, 26, 8255-8265.	7.8	65
41	Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids. Composites Science and Technology, 2014, 91, 98-103.	3.8	64
42	Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy, 2022, 97, 107160.	8.2	64
43	A Waterproof Ionâ€Conducting Fluorinated Elastomer with 6000% Stretchability, Superior Ionic Conductivity, and Harsh Environment Tolerance. Advanced Functional Materials, 2022, 32, .	7.8	62
44	Synthesis of the multi-walled carbon nanotubes-COOH/graphene/gold nanoparticles nanocomposite for simple determination of Bilirubin in human blood serum. Sensors and Actuators B: Chemical, 2013, 185, 337-344.	4.0	61
45	Cobalt, Nitrogen-Doped Porous Carbon Nanosheet-Assembled Flowers from Metal-Coordinated Covalent Organic Polymers for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2019, 11, 1384-1393.	4.0	56
46	Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode. Nano Research, 2016, 9, 2938-2949.	5.8	55
47	Hierarchical Nanostructures of Nitrogen-Doped Porous Carbon Polyhedrons Confined in Carbon Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 19871-19880.	4.0	54
48	3D Printed, Solid‣tate Conductive Ionoelastomer as a Generic Building Block for Tactile Applications. Advanced Materials, 2022, 34, e2105996.	11.1	54
49	One-step hybridization of graphene nanoribbons with carbon nanotubes and its strong-yet-ductile thermoplastic polyurethane composites. Polymer, 2013, 54, 3124-3130.	1.8	53
50	Highly Stretchable, Fast Self-Healing, and Waterproof Fluorinated Copolymer Ionogels with Selectively Enriched Ionic Liquids for Human-Motion Detection. ACS Applied Materials & Interfaces, 2021, 13, 49358-49368.	4.0	53
51	Multi-heteroatom-doped hollow carbon nanocages from ZIF-8@CTP nanocomposites as high-performance anodes for sodium-ion batteries. Composites Communications, 2022, 32, 101116.	3.3	51
52	A review on hybridization modification of graphene and its polymer nanocomposites. Science Bulletin, 2012, 57, 3010-3021.	1.7	50
53	Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities. Journal of Materials Chemistry A, 2017, 5, 19997-20004.	5.2	49
54	Self-Assembled Mesoporous Carbon Nitride with Tunable Texture for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8291-8299.	3.2	48

#	Article	IF	CITATIONS
55	Supercritical Carbon Dioxide Assisted Deposition of Fe ₃ O ₄ Nanoparticles on Hierarchical Porous Carbon and Their Lithiumâ€Storage Performance. Chemistry - A European Journal, 2014, 20, 4308-4315.	1.7	47
56	Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chemical Engineering Journal, 2021, 420, 127637.	6.6	47
57	Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. Composites Communications, 2021, 24, 100677.	3.3	46
58	Highly Stretchable and Reconfigurable lonogels with Unprecedented Thermoplasticity and Ultrafast Self-Healability Enabled by Gradient-Responsive Networks. Macromolecules, 2021, 54, 3832-3844.	2.2	45
59	Nonenzymatic sensor for glucose based on a glassy carbon electrode modified with Ni(OH)2 nanoparticles grown on a film of molybdenum sulfide. Mikrochimica Acta, 2013, 180, 1127-1134.	2.5	44
60	Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. Composites Part B: Engineering, 2021, 217, 108901.	5.9	44
61	A biomimetic <i>Setaria viridis</i> -inspired electrode with polyaniline nanowire arrays aligned on MoO ₃ @polypyrrole core–shell nanobelts. Journal of Materials Chemistry A, 2018, 6, 13428-13437.	5.2	43
62	Nitrogen-doped hollow carbon nanoflowers from a preformed covalent triazine framework for metal-free bifunctional electrocatalysis. Nanoscale, 2020, 12, 14441-14447.	2.8	41
63	Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches. Journal of Materials Research, 2013, 28, 611-619.	1.2	40
64	Constructing a "Pizza‣ike―MoS ₂ /Polypyrrole/Polyaniline Ternary Architecture with High Energy Density and Superior Cycling Stability for Supercapacitors. Advanced Materials Interfaces, 2016, 3, 1600665.	1.9	40
65	Dense Hydrogen-Bonding Network Boosts Ionic Conductive Hydrogels with Extremely High Toughness, Rapid Self-Recovery, and Autonomous Adhesion for Human-Motion Detection. Research, 2021, 2021, 9761625.	2.8	40
66	Xylem-Inspired Polyimide/MXene Aerogels with Radial Lamellar Architectures for Highly Sensitive Strain Detection and Efficient Solar Steam Generation. Nano Letters, 2022, 22, 4560-4568.	4.5	40
67	Multiwalled carbon nanotube nucleated crystallization behavior of biodegradable poly(butylene) Tj ETQq1 1 0.7	84314 rgB 1.3	T /Qyerlock
68	Functionalization of graphene and grafting of temperature-responsive surfaces from graphene by ATRP "on water― Journal of Nanoparticle Research, 2012, 14, 1.	0.8	38
69	Template-free construction of hollow mesoporous carbon spheres from a covalent triazine framework for enhanced oxygen electroreduction. Journal of Colloid and Interface Science, 2022, 608, 3168-3177.	5.0	37
70	Compressible and Lightweight MXene/Carbon Nanofiber Aerogel with "Layer-Strut―Bracing Microscopic Architecture for Efficient Energy Storage. Advanced Fiber Materials, 2022, 4, 820-831.	7.9	37
71	Molecular-engineered hybrid carbon nanofillers for thermoplastic polyurethane nanocomposites with high mechanical strength and toughness. Composites Part B: Engineering, 2019, 177, 107381.	5.9	36
72	Polyaniline engineering defect-induced nitrogen doped carbon-supported Co3O4 hybrid composite as a high-efficiency electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 526, 146626.	3.1	36

#	Article	IF	CITATIONS
73	Emerging Dualâ€Channel Transitionâ€Metalâ€Oxide Quasiaerogels by Selfâ€Embedded Templating. Advanced Functional Materials, 2020, 30, 2000024.	7.8	36
74	Fluorine and Nitrogen Dual-Doped Porous Carbon Nanosheet-Enabled Compact Electrode Structure for High Volumetric Energy Storage. ACS Applied Energy Materials, 2020, 3, 4949-4957.	2.5	36
75	Surface modifications of halloysite nanotubes with superparamagnetic Fe3O4 nanoparticles and carbonaceous layers for efficient adsorption of dyes in water treatment. Chemical Research in Chinese Universities, 2014, 30, 971-977.	1.3	35
76	High-temperature solvent-free sulfidation of MoO ₃ confined in a polypyrrole shell: MoS ₂ nanosheets encapsulated in a nitrogen, sulfur dual-doped carbon nanoprism for efficient lithium storage. Nanoscale, 2018, 10, 7536-7543.	2.8	35
77	Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries. Nano Research, 2018, 11, 6155-6166.	5.8	33
78	Compressible and robust PANI sponge anchored with erected MXene flakes for human motion detection. Composites Part A: Applied Science and Manufacturing, 2021, 151, 106671.	3.8	33
79	All-carbon composite paper as a flexible conducting substrate for the direct growth of polyaniline particles and its applications in supercapacitors. Polymer Chemistry, 2013, 4, 5785.	1.9	32
80	Carbon Nanotube with Vertical 2D Molybdenum Sulphoselenide Nanosheet Arrays for Boosting Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 7035-7045.	2.5	32
81	Solventâ€Exchange Strategy toward Aqueous Dispersible MoS ₂ Nanosheets and Their Nitrogenâ€Rich Carbon Sphere Nanocomposites for Efficient Lithium/Sodium Ion Storage. Small, 2019, 15, e1903816.	5.2	31
82	Nitrogen-Doped Carbon Polyhedra Nanopapers: An Advanced Binder-Free Electrode for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 5240-5248.	3.2	30
83	Ultrathin Polypyrrole Layers Boosting MoO ₃ as Both Cathode and Anode Materials for a 2.0 V High-Voltage Aqueous Supercapacitor. ACS Applied Materials & Interfaces, 2022, 14, 4490-4499.	4.0	30
84	Preparation and Characterization of Polyurethane/Multiwalled Carbon Nanotube Composites. Polymers and Polymer Composites, 2008, 16, 501-507.	1.0	28
85	The preparation of graphene hybrid films decorated with poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] particles prepared by non-solvent induced precipitation. Carbon, 2012, 50, 216-224.	5.4	28
86	Interlayer-Expanded Metal Sulfides on Graphene Triggered by a Molecularly Self-Promoting Process for Enhanced Lithium Ion Storage. ACS Applied Materials & Interfaces, 2017, 9, 40317-40323.	4.0	28
87	Ultra-highly stretchable and anisotropic SEBS/F127 fiber films equipped with an adaptive deformable carbon nanotube layer for dual-mode strain sensing. Journal of Materials Chemistry A, 2021, 9, 18294-18305.	5.2	28
88	Stereoselectively Assembled Metal–Organic Framework (MOF) Host for Catalytic Synthesis of Carbon Hybrids for Alkalineâ€Metalâ€Ion Batteries. Angewandte Chemie, 2019, 131, 5361-5365.	1.6	27
89	Encapsulation of Co-based nanoparticle in N-doped graphitic carbon for efficient oxygen reduction reaction. Carbon, 2020, 156, 31-37.	5.4	27
90	Metallogel-derived 3D porous carbon nanosheet composites as an electrocatalyst for oxygen reduction reaction. Composites Communications, 2020, 20, 100376.	3.3	27

#	Article	IF	CITATIONS
91	Polyaniline-decorated 3D carbon porous network with excellent electrolyte wettability and high energy density for supercapacitors. Composites Communications, 2021, 24, 100610.	3.3	27
92	Hybridizing Carbon Nitride Colloids with a Shell of Water-Soluble Conjugated Polymers for Tunable Full-Color Emission and Synergistic Cell Imaging. ACS Applied Materials & Interfaces, 2017, 9, 43966-43974.	4.0	26
93	Hierarchical Response Network Boosts Solvent-Free Ionic Conductive Elastomers with Extreme Stretchability, Healability, and Recyclability for Ionic Sensors. ACS Applied Materials & Interfaces, 2022, 14, 8404-8416.	4.0	26
94	A novel approach for transferring water-dispersible graphene nanosheets into organic media. Journal of Materials Chemistry, 2012, 22, 11748.	6.7	25
95	Synthesis, characterization and self-assembly behavior in water as fluorescent sensors of cationic water-soluble conjugated polyfluorene-b-poly(N-isopropylacrylamide) diblock copolymers. Polymer, 2009, 50, 1236-1245.	1.8	24
96	3D reactive printing of polyaniline hybrid hydrogel microlattices with large stretchability and high fatigue resistance for wearable pressure sensors. Composites Science and Technology, 2022, 220, 109263.	3.8	24
97	Sandwich-structured composite separators with an anisotropic pore architecture for highly safe Li-ion batteries. Composites Communications, 2018, 8, 46-51.	3.3	23
98	Wet-spinning of ionic liquid@elastomer coaxial fibers with high stretchability and wide temperature resistance for strain sensors. Composites Communications, 2021, 25, 100693.	3.3	23
99	Polymorphism of electrospun polyvinylidene difluoride/carbon nanotube (CNT) nanocomposites: Synergistic effects of CNT surface chemistry, extensional force and supercritical carbon dioxide treatment. Polymer, 2012, 53, 5097-5102.	1.8	22
100	Confined sulfidation strategy toward cobalt sulfide@nitrogen, sulfur co-doped carbon core-shell nanocomposites for lithium-ion battery anodes. Composites Communications, 2019, 15, 162-167.	3.3	22
101	2D nanosheet-constructed hybrid nanofillers for polymer nanocomposites with synergistic dispersion and function. APL Materials, 2019, 7, .	2.2	22
102	Assembly of 2D graphene sheets and 3D carbon nanospheres into flexible composite electrodes for high-performance supercapacitors. Composites Communications, 2019, 12, 117-122.	3.3	22
103	Facile fabrication of polystyrene/carbon nanotube composite nanospheres with core-shell structure via self-assembly. Polymer, 2010, 51, 3715-3721.	1.8	21
104	Sponge-Hosting Polyaniline Array Microstructures for Piezoresistive Sensors with a Wide Detection Range and High Sensitivity. ACS Applied Materials & amp; Interfaces, 2022, 14, 30228-30235.	4.0	21
105	Layer-by-layer self-assembly of polyimide precursor/layered double hydroxide ultrathin films. Thin Solid Films, 2010, 518, 7081-7085.	0.8	20
106	Preparation and characterization of organic-inorganic hybrid nanomaterials using polyurethane-b-poly[3-(trimethoxysilyl) propyl methacrylate] via RAFT polymerization. EXPRESS Polymer Letters, 2010, 4, 17-25.	1.1	20
107	Highly stretchable and self-healable ionogels with multiple sensitivity towards compression, strain and moisture for skin-inspired ionic sensors. Science China Materials, 2022, 65, 2252-2261.	3.5	20
108	Preparation, morphology, and biolabeling of fluorescent nanoparticles based on conjugated polymers by emulsion polymerization. Journal of Polymer Science Part A, 2010, 48, 4867-4874.	2.5	19

#	Article	IF	CITATIONS
109	3D honeycombed cobalt, nitrogen co-doped carbon nanosheets via hypersaline-protected pyrolysis towards efficient oxygen reduction. Nanotechnology, 2020, 31, 364003.	1.3	18
110	Automatically Modulated Thermoresponsive Film Based on a Phase-Changing Copolymer. Chemistry of Materials, 2021, 33, 7232-7241.	3.2	18
111	Stretchable, Environment-Stable, and Knittable Ionic Conducting Fibers Based on Metallogels for Wearable Wide-Range and Durable Strain Sensors. ACS Applied Materials & Interfaces, 2022, 14, 4542-4551.	4.0	18
112	Superelastic, Fatigue-Resistant, and Flame-Retardant Spongy Conductor for Human Motion Detection against a Harsh High-Temperature Condition. ACS Applied Materials & Interfaces, 2021, 13, 7580-7591.	4.0	16
113	Strong–Weak Response Network-Enabled Ionic Conductive Hydrogels with High Stretchability, Self-Healability, and Self-Adhesion for Ionic Sensors. ACS Applied Materials & Interfaces, 2022, 14, 32551-32560.	4.0	16
114	Nitrogen Boosts Defective Vanadium Oxide from Semiconducting to Metallic Merit. Small, 2019, 15, e1900583.	5.2	15
115	One-pot hydrothermal synthesis and reusable oil-adsorbing properties of porous carbonaceous monoliths using multi-walled carbon nanotubes as templates. RSC Advances, 2013, 3, 14938.	1.7	14
116	Conducting Polymer-Based Composite Materials for Therapeutic Implantations: From Advanced Drug Delivery System to Minimally Invasive Electronics. International Journal of Polymer Science, 2020, 2020, 1-16.	1.2	14
117	Synthesis and electrochemical performance of core-shell NiCo2S4@nitrogen, sulfur dual-doped carbon composites via confined sulfidation strategy in a polydopamine nanoreactor. Composites Communications, 2019, 12, 74-79.	3.3	13
118	Highly stretchable, self-healable and self-adhesive polyzwitterion ionogels enabled with binary noncovalent interactions. Composites Communications, 2022, 34, 101251.	3.3	13
119	Supramolecular Assembly of 1D Pristine Carbon Nanotubes and 2D Graphene Oxides into Macroscopic Allâ€Carbon Hybrid Sponges for Highâ€Energyâ€Density Supercapacitors. ChemNanoMat, 2017, 3, 447-453.	1.5	12
120	Molten salt-confined pyrolysis towards carbon nanotube-backboned microporous carbon for high-energy-density and durable supercapacitor electrodes. Nanotechnology, 2021, 32, 095605.	1.3	11
121	Thermo-spun reaction encapsulation fabrication of environment-stable and knittable fibrous ionic conductors with large elasticity and high fatigue resistance. Chemical Engineering Journal, 2022, 435, 134826.	6.6	10
122	Poly (γ-Glutamic Acid) Promotes Enhanced Dechlorination of p-Chlorophenol by Fe-Pd Nanoparticles. Nanoscale Research Letters, 2018, 13, 219.	3.1	7
123	Hierarchically Organized Nanocomposites Derived from Low-dimensional Nanomaterials for Efficient Removal of Organic Pollutants. Current Organic Chemistry, 2015, 19, 498-511.	0.9	7
124	Coaxial-cable hierarchical tubular MnO ₂ @Fe ₃ O ₄ @C heterostructures as advanced anodes for lithium-ion batteries. Nanotechnology, 2019, 30, 094002.	1.3	5
125	Ultraâ€stretchable, selfâ€healable, and reprocessable ionic conductive hydrogels enabled by dual dynamic networks. Journal of Polymer Science, 2022, 60, 2817-2827.	2.0	5
126	Cryopolymerizationâ€enabled selfâ€wrinkled polyanilineâ€based hydrogels for highly stretchable allâ€inâ€one supercapacitors. Exploration, 2022, 2, .	5.4	4

#	Article	IF	CITATIONS
127	Cryoâ€spun encapsulation of polyanilineâ€based conducting hydrogels with high sensitivity, wideâ€range linearity, and environmental stability for fibrous strain sensors. Journal of Polymer Science, 2022, 60, 2710-2719.	2.0	3
128	Spatial Adjustment Strategy to Improve the Sensitivity of Ionogels for Flexible Sensors. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	3
129	Carbon composites from iron-chelating pyridine nitrogen-rich coordinated nanosheets for oxygen reduction. Functional Composite Materials, 2022, 3, .	0.9	Ο