List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7781963/publications.pdf Version: 2024-02-01

ARILAL-PUR PASHIDK

#	Article	IF	CITATIONS
1	Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cement and Concrete Research, 2011, 41, 339-358.	4.6	384
2	Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Advanced Engineering Materials, 2019, 21, 1900524.	1.6	353
3	Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Additive Manufacturing, 2018, 19, 167-183.	1.7	345
4	Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. International Journal of Plasticity, 2004, 20, 1139-1182.	4.1	305
5	On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Construction and Building Materials, 2012, 35, 647-655.	3.2	294
6	Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Materials and Design, 2017, 122, 255-267.	3.3	268
7	Carbon Nanotubes and Carbon Nanofibers for Enhancing the Mechanical Properties of Nanocomposite Cementitious Materials. Journal of Materials in Civil Engineering, 2011, 23, 1028-1035.	1.3	266
8	A plasticity and anisotropic damage model for plain concrete. International Journal of Plasticity, 2007, 23, 1874-1900.	4.1	260
9	Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Materials and Design, 2019, 165, 107597.	3.3	246
10	On the coupling of anisotropic damage and plasticity models for ductile materials. International Journal of Solids and Structures, 2003, 40, 2611-2643.	1.3	236
11	Gradient plasticity theory with a variable length scale parameter. International Journal of Solids and Structures, 2005, 42, 3998-4029.	1.3	235
12	Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103520.	1.5	213
13	Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces. Mechanics of Materials, 2016, 95, 102-115.	1.7	197
14	Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory. International Journal of Plasticity, 2004, 20, 981-1038.	4.1	194
15	A thermo-viscoelastic–viscoplastic–viscodamage constitutive model for asphaltic materials. International Journal of Solids and Structures, 2011, 48, 191-207.	1.3	173
16	A physically based gradient plasticity theory. International Journal of Plasticity, 2006, 22, 654-684.	4.1	170
17	A continuum damage mechanics framework for modeling micro-damage healing. International Journal of Solids and Structures, 2012, 49, 492-513.	1.3	160
18	A micro-damage healing model that improves prediction of fatigue life in asphalt mixes. International Journal of Engineering Science, 2010, 48, 966-990.	2.7	154

#	Article	IF	CITATIONS
19	Microarchitected Stretchingâ€Dominated Mechanical Metamaterials with Minimal Surface Topologies. Advanced Engineering Materials, 2018, 20, 1800029.	1.6	138
20	3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation. Desalination, 2018, 443, 256-271.	4.0	135
21	Stiffness and yield strength of architectured foams based on the Schwarz Primitive triply periodic minimal surface. International Journal of Plasticity, 2017, 95, 1-20.	4.1	131
22	3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF. Desalination, 2018, 425, 12-21.	4.0	122
23	Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture. Engineering Fracture Mechanics, 2010, 77, 1577-1603.	2.0	121
24	Mechanical Properties of Nanocomposite Cement Incorporating Surface-Treated and Untreated Carbon Nanotubes and Carbon Nanofibers. Journal of Nanomechanics & Micromechanics, 2012, 2, 1-6.	1.4	121
25	Distribution of Carbon Nanofibers and Nanotubes in Cementitious Composites. Transportation Research Record, 2010, 2142, 89-95.	1.0	118
26	Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures. Composite Structures, 2017, 176, 9-19.	3.1	109
27	Mechanical Properties of a New Type of Architected Interpenetrating Phase Composite Materials. Advanced Materials Technologies, 2017, 2, 1600235.	3.0	108
28	Quasi-static and dynamic compressive behaviour of sheet TPMS cellular structures. Composite Structures, 2021, 266, 113801.	3.1	104
29	A thermodynamic framework for constitutive modeling of time- and rate-dependent materials. Part I: Theory. International Journal of Plasticity, 2012, 34, 61-92.	4.1	102
30	Three-dimensional microstructural modeling of asphalt concrete using a unified viscoelastic–viscoplastic–viscodamage model. Construction and Building Materials, 2012, 28, 531-548.	3.2	95
31	Mechanical properties of 3D printed interpenetrating phase composites with novel architectured 3D solid-sheet reinforcements. Composites Part A: Applied Science and Manufacturing, 2016, 84, 266-280.	3.8	95
32	Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements. International Journal of Solids and Structures, 2016, 83, 169-182.	1.3	94
33	The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface. Journal of Materials Research, 2018, 33, 343-359.	1.2	94
34	A thermodynamic based higher-order gradient theory for size dependent plasticity. International Journal of Solids and Structures, 2007, 44, 2888-2923.	1.3	88
35	Three-Dimensional Simulations of Asphalt Pavement Permanent Deformation Using a Nonlinear Viscoelastic and Viscoplastic Model. Journal of Materials in Civil Engineering, 2011, 23, 56-68.	1.3	88
36	A Finite Strain Plastic-damage Model for High Velocity Impact using Combined Viscosity and Gradient Localization Limiters: Part I - Theoretical Formulation. International Journal of Damage Mechanics, 2006, 15, 293-334.	2.4	87

#	Article	IF	CITATIONS
37	Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mechanics of Materials, 2007, 39, 787-802.	1.7	85
38	Gradient-enhanced Coupled Plasticity-anisotropic Damage Model for Concrete Fracture: Computational Aspects and Applications. International Journal of Damage Mechanics, 2009, 18, 115-154.	2.4	84
39	Thermodynamic based model for the evolution equation of the backstress in cyclic plasticity. International Journal of Plasticity, 2003, 19, 2121-2147.	4.1	81
40	A direct finite element implementation of the gradient-dependent theory. International Journal for Numerical Methods in Engineering, 2005, 63, 603-629.	1.5	80
41	MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Material Design and Processing Communications, 2021, 3, e205.	0.5	80
42	A Finite Strain Plastic-damage Model for High Velocity Impacts using Combined Viscosity and Gradient Localization Limiters: Part II - Numerical Aspects and Simulations. International Journal of Damage Mechanics, 2006, 15, 335-373.	2.4	79
43	Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites. Composite Structures, 2015, 133, 85-97.	3.1	79
44	Additive manufacturing of architected catalytic ceramic substrates based on triply periodic minimal surfaces. Journal of the American Ceramic Society, 2019, 102, 6176-6193.	1.9	78
45	A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures. International Journal of Plasticity, 2012, 35, 100-134.	4.1	77
46	A quantitative method for analyzing the dispersion and agglomeration of nano-particles in composite materials. Composites Part B: Engineering, 2011, 42, 1395-1403.	5.9	75
47	Constitutive modeling of fatigue damage response of asphalt concrete materials with consideration of micro-damage healing. International Journal of Solids and Structures, 2013, 50, 2901-2913.	1.3	75
48	Comparing finite element and constitutive modelling techniques for predicting rutting of asphalt pavements. International Journal of Pavement Engineering, 2012, 13, 322-338.	2.2	74
49	3D printed spacers for organic fouling mitigation in membrane distillation. Journal of Membrane Science, 2019, 581, 331-343.	4.1	73
50	Mechanistic-based constitutive modeling of oxidative aging in aging-susceptible materials and its effect on the damage potential of asphalt concrete. Construction and Building Materials, 2013, 41, 439-454.	3.2	72
51	Natureâ€Inspired Lightweight Cellular Co ontinuous Composites with Architected Periodic Gyroidal Structures. Advanced Engineering Materials, 2018, 20, 1700549.	1.6	72
52	Thermodynamicâ€based model for coupling temperatureâ€dependent viscoelastic, viscoplastic, and viscodamage constitutive behavior of asphalt mixtures. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36, 817-854.	1.7	70
53	Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements. International Journal of Mechanical Sciences, 2015, 92, 80-89.	3.6	70
54	A thermodynamic framework for constitutive modeling of time- and rate-dependent materials. Part II: Numerical aspects and application to asphalt concrete. International Journal of Plasticity, 2012, 35, 67-99.	4.1	69

#	Article	IF	CITATIONS
55	Forced Convection Computational Fluid Dynamics Analysis of Architected and Three-Dimensional Printable Heat Sinks Based on Triply Periodic Minimal Surfaces. Journal of Thermal Science and Engineering Applications, 2021, 13, .	0.8	69
56	Mass transfer analysis of ultrafiltration using spacers based on triply periodic minimal surfaces: Effects of spacer design, directionality and voidage. Journal of Membrane Science, 2018, 561, 89-98.	4.1	64
57	3D printed spacers based on TPMS architectures for scaling control in membrane distillation. Journal of Membrane Science, 2019, 581, 38-49.	4.1	62
58	Mechanical behavior of polymeric selective laser sintered ligament and sheet based lattices of triply periodic minimal surface architectures. Materials and Design, 2020, 196, 109100.	3.3	61
59	Interfacial gradient plasticity governs scale-dependent yield strength and strain hardening rates in micro/nano structured metals. International Journal of Plasticity, 2008, 24, 1277-1306.	4.1	58
60	Dispersion quantification of inclusions in composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 75-83.	3.8	56
61	On Mechanical Properties of Cellular Steel Solids With Shell-Like Periodic Architectures Fabricated by Selective Laser Sintering. Journal of Engineering Materials and Technology, Transactions of the ASME, 2019, 141, .	0.8	56
62	Mechanical Response of 3D Printed Bending-Dominated Ligament-Based Triply Periodic Cellular Polymeric Solids. Journal of Materials Engineering and Performance, 2019, 28, 2316-2326.	1.2	55
63	Fabrication of Freestanding Sheets of Multiwalled Carbon Nanotubes (Buckypapers) for Vanadium Redox Flow Batteries and Effects of Fabrication Variables on Electrochemical Performance. Electrochimica Acta, 2017, 230, 222-235.	2.6	53
64	Flexural properties of functionally graded additively manufactured AlSi10Mg TPMS latticed-beams. International Journal of Mechanical Sciences, 2022, 223, 107293.	3.6	52
65	Effect of mixing duration on flexural strength of multi walled carbon nanotubes cementitious composites. Construction and Building Materials, 2016, 126, 586-598.	3.2	49
66	Microstructural characterization and thermomechanical behavior of additively manufactured AlSi10Mg sheet cellular materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 791, 139714.	2.6	47
67	Determination of the Material Intrinsic Length Scale of Gradient Plasticity Theory. International Journal for Multiscale Computational Engineering, 2004, 2, 377-400.	0.8	47
68	Time dependent response of architectured Neovius foams. International Journal of Mechanical Sciences, 2017, 126, 106-119.	3.6	45
69	Design and prototyping soft–rigid tendon-driven modular grippers using interpenetrating phase composites materials. International Journal of Robotics Research, 2020, 39, 1635-1646.	5.8	45
70	Electrical conductivity of 3D periodic architectured interpenetrating phase composites with carbon nanostructured-epoxy reinforcements. Composites Science and Technology, 2015, 118, 127-134.	3.8	44
71	Challenges and Benefits of Utilizing Carbon Nanofilaments in Cementitious Materials. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	42
72	Novel static mixers based on triply periodic minimal surface (TPMS) architectures. Journal of Environmental Chemical Engineering, 2020, 8, 104289.	3.3	42

#	Article	IF	CITATIONS
73	Numerical implementation and validation of a nonlinear viscoelastic and viscoplastic model for asphalt mixes. International Journal of Pavement Engineering, 2011, 12, 433-447.	2.2	41
74	Effect of confinement pressure on the nonlinear-viscoelastic response of asphalt concrete at high temperatures. Construction and Building Materials, 2013, 47, 779-788.	3.2	41
75	Modeling of elastoplastic behavior of stainless-steel/bronze interpenetrating phase composites with damage evolution. International Journal of Plasticity, 2014, 61, 94-111.	4.1	38
76	Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites. International Journal of Damage Mechanics, 2015, 24, 198-244.	2.4	38
77	Micromechanical finite element analysis of the effects of martensite morphology on the overall mechanical behavior of dual phase steel. International Journal of Solids and Structures, 2017, 104-105, 8-24.	1.3	34
78	Microstructural modeling of asphalt concrete using a coupled moisture–mechanical constitutive relationship. International Journal of Solids and Structures, 2014, 51, 4260-4279.	1.3	33
79	Heat transfer effectiveness characteristics maps for additively manufactured TPMS compact heat exchangers. Energy Storage and Saving, 2022, 1, 153-161.	3.0	32
80	Mesomechanical modeling of the thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamage response of asphalt concrete. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2011, 3, 14-33.	0.7	31
81	Effective Anisotropic Elastic and Plastic Yield Properties of Periodic Foams Derived from Triply Periodic Schoen's I-WP Minimal Surface. Journal of Engineering Mechanics - ASCE, 2020, 146, .	1.6	31
82	Fluid flow and heat transfer of porous TPMS architected heat sinks in free convection environment. Case Studies in Thermal Engineering, 2022, 33, 101944.	2.8	30
83	Microstructural modeling of dual phase steel using a higher-order gradient plasticity–damage model. International Journal of Solids and Structures, 2015, 58, 178-189.	1.3	29
84	Micromechanical theoretical and computational modeling of energy dissipation due to nonlinear vibration of hard ceramic coatings with microstructural recursive faults. International Journal of Solids and Structures, 2010, 47, 2131-2142.	1.3	28
85	Three-Dimensional Microstructural Modeling of Asphalt Concrete by Use of X-Ray Computed Tomography. Transportation Research Record, 2013, 2373, 63-70.	1.0	28
86	Compression and buckling of microarchitectured Neovius-lattice. Extreme Mechanics Letters, 2020, 37, 100688.	2.0	27
87	Effect of Nanotube Geometry on the Strength and Dispersion of CNT-Cement Composites. Journal of Nanomaterials, 2017, 2017, 1-15.	1.5	26
88	Nonlocal Gradient-Dependent Thermodynamics for Modeling Scale-Dependent Plasticity. International Journal for Multiscale Computational Engineering, 2007, 5, 295-323.	0.8	26
89	Continuum Coupled Moisture–Mechanical Damage Model for Asphalt Concrete. Transportation Research Record, 2013, 2372, 72-82	1.0	25
90	Computational modeling of the effect of equiaxed heterogeneous microstructures on strength and ductility of dual phase steels. Computational Materials Science, 2015, 103, 20-37.	1.4	25

#	Article	IF	CITATIONS
91	Finite element implementation and application of a cohesive zone damage-healing model for self-healing materials. Engineering Fracture Mechanics, 2016, 163, 1-22.	2.0	25
92	Antiscaling 3D printed feed spacers via facile nanoparticle coating for membrane distillation. Water Research, 2021, 189, 116649.	5.3	25
93	Processing and property investigation of high-density carbon nanostructured papers with superior conductive and mechanical properties. Diamond and Related Materials, 2016, 68, 109-117.	1.8	24
94	Effective stiffness, strength, buckling and anisotropy of foams based on nine unique triple periodic minimal surfaces. International Journal of Solids and Structures, 2022, 238, 111418.	1.3	24
95	Determination of the Material Intrinsic Length Scale of Gradient Plasticity Theory. Solid Mechanics and Its Applications, 2004, , 167-174.	0.1	23
96	Cyclic Hardening-Relaxation Viscoplasticity Model for Asphalt Concrete Materials. Journal of Engineering Mechanics - ASCE, 2013, 139, 832-847.	1.6	21
97	Thermodynamic-based cohesive zone healing model for self-healing materials. Mechanics Research Communications, 2015, 70, 102-113.	1.0	21
98	On Stiffness, Strength, Anisotropy, and Buckling of 30 Strutâ€Based Lattices with Cubic Crystal Structures. Advanced Engineering Materials, 2022, 24, .	1.6	21
99	Constitutive Modeling and Simulation of Perforation of Targets by Projectiles. AIAA Journal, 2008, 46, 304-316.	1.5	19
100	Three-dimensional microstructural modelling of coupled moisture–mechanical response of asphalt concrete. International Journal of Pavement Engineering, 2015, 16, 445-466.	2.2	19
101	Mechanical properties of additively-manufactured sheet-based gyroidal stochastic cellular materials. Additive Manufacturing, 2021, 48, 102418.	1.7	18
102	The effects of flue-wall design modifications on combustion and flow characteristics of an aluminum anode baking furnace-CFD modeling. Applied Energy, 2018, 230, 207-219.	5.1	17
103	Comparative assessment of the effects of 3D printed feed spacers on process performance in MD systems. Desalination, 2021, 503, 114940.	4.0	17
104	Modeling Time and Frequency Domain Viscoelastic Behavior of Architectured Foams. Journal of Engineering Mechanics - ASCE, 2018, 144, 04018029.	1.6	16
105	A thermodynamically consistent framework to derive local/nonlocal generalized nonassociative plasticity/viscoplasticity theories. International Journal of Plasticity, 2018, 110, 19-37.	4.1	16
106	Viscoelastic properties of architected foams based on the Schoen IWP triply periodic minimal surface. Mechanics of Advanced Materials and Structures, 2020, 27, 775-788.	1.5	16
107	Prediction of Micro and Nano Indentation Size Effects from Spherical Indenters. Mechanics of Advanced Materials and Structures, 2012, 19, 119-128.	1.5	15
108	A thermodynamic framework for constitutive modeling of coupled moisture-mechanical induced damage in partially saturated viscous porous media. Mechanics of Materials, 2016, 96, 53-75.	1.7	15

#	Article	IF	CITATIONS
109	Nano-Mechanical Characterization of Mastic, Aggregate, and Interfacial Zone in Asphalt Composites. Journal of Testing and Evaluation, 2013, 41, 924-932.	0.4	15
110	On the small and finite deformation thermo-elasto-viscoplasticity theory for strain localization problems. European Journal of Computational Mechanics, 2006, 15, 945-987.	0.6	14
111	Thermo-Electro-Mechanical Properties of Interpenetrating Phase Composites with Periodic Architectured Reinforcements. Advanced Structured Materials, 2015, , 1-18.	0.3	14
112	Strength optimisation of mortar with CNTs and nanoclays. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2016, 169, 340-356.	0.4	14
113	Impacts of feed spacer design on UF membrane cleaning efficiency. Journal of Membrane Science, 2020, 616, 118571.	4.1	14
114	An optimization case study to design additively manufacturable porous heat sinks based on triply periodic minimal surface (TPMS) lattices. Case Studies in Thermal Engineering, 2022, 36, 102161.	2.8	14
115	Mesomechanical Modeling of Polymer/Clay Nanocomposites Using a Viscoelastic-Viscoplastic-Viscodamage Constitutive Model. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	0.8	13
116	Three-Dimensional Microstructural Modeling Framework for Dense-Graded Asphalt Concrete Using a Coupled Viscoelastic, Viscoplastic, and Viscodamage Model. Journal of Materials in Civil Engineering, 2014, 26, 607-621.	1.3	13
117	Constitutive Modeling of the Coupled Moisture-Mechanical Response of Particulate Composite Materials with Application to Asphalt Concrete. Journal of Engineering Mechanics - ASCE, 2015, 141, .	1.6	13
118	Predicting mesh-independent ballistic limits for heterogeneous targets by a nonlocal damage computational framework. Composites Part B: Engineering, 2009, 40, 495-510.	5.9	12
119	Computational Modelling of Fracture Propagation in Rocks Using a Coupled Elastic-Plasticity-Damage Model. Mathematical Problems in Engineering, 2016, 2016, 1-15.	0.6	11
120	Effect of the Realistic Tire Contact Pressure on the Rutting Performance of Asphaltic Concrete Pavements. KSCE Journal of Civil Engineering, 2018, 22, 2138-2146.	0.9	11
121	Modeling the Particle Size and Interfacial Hardening Effects in Metal Matrix Composites with Dispersed Particles at Decreasing Microstructural Length Scales. International Journal for Multiscale Computational Engineering, 2009, 7, 329-350.	0.8	10
122	Modeling the interfacial effect on the yield strength and flow stress of thin metal films on substrates. Mechanics Research Communications, 2008, 35, 65-72.	1.0	9
123	On the numerical implementation of the higher-order strain gradient-dependent plasticity theory and its non-classical boundary conditions. Finite Elements in Analysis and Design, 2015, 93, 50-69.	1.7	8
124	Two Dimensional CFD Simulations of a Flue-wall in the Anode Baking Furnace for Aluminum Production. Energy Procedia, 2017, 105, 5134-5139.	1.8	8
125	Engineering 3Dâ€Architected Gyroid MXene Scaffolds for Ultrasensitive Micromechanical Sensing. Advanced Engineering Materials, 2022, 24, .	1.6	8
126	Calibration and Validation of a Comprehensive Constitutive Model for Asphalt Mixtures. Transportation Research Record, 2014, 2447, 13-22.	1.0	7

#	Article	IF	CITATIONS
127	The Impact of Critical Operational Parameters on the Performance of the Aluminum Anode Baking Furnace. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	1.4	7
128	Dislocation-based model for predicting size-scale effects on the micro and nano indentation hardness of metallic materials. International Journal of Materials and Structural Integrity, 2010, 4, 251.	0.1	6
129	Coupled Interfacial Energy and Temperature Effects on Size-Dependent Yield Strength and Strain Hardening of Small Metallic Volumes. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	0.8	6
130	Modeling Interparticle Size Effect on Deformation Behavior of Metal Matrix Composites by a Gradient Enhanced Plasticity Model. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	0.8	6
131	Investigating the flue-wall deformation effects on performance characteristics of an open-top aluminum anode baking furnace. Applied Energy, 2018, 231, 1033-1049.	5.1	5
132	Mechanical Behavior of Shape-Memory Alloy Triply Periodic Minimal Surface Foam Based on Schwarz Primitive. Journal of Engineering Mechanics - ASCE, 2022, 148, .	1.6	5
133	Thermodynamic framework for coupling of elasto-viscoplasticity and nonlocal anisotropic damage for microelectronics solder alloys. International Journal of Materials and Structural Integrity, 2008, 2, 106.	0.1	4
134	On the thermodynamics of higher-order gradient plasticity for size-effects at the micron and submicron length scales. International Journal of Materials and Product Technology, 2009, 34, 172.	0.1	4
135	The Effect of Fiber Geometry and Interfacial Properties on the Elastic Properties of Cementitious Nanocomposite Material. Journal of Nanomaterials, 2015, 2015, 1-14.	1.5	4
136	Micromechanical Finite Element Analysis of the Effects of Martensite Particle Size and Ferrite Grain Boundaries on the Overall Mechanical Behavior of Dual Phase Steel. Journal of Engineering Materials and Technology, Transactions of the ASME, 2017, 139, .	0.8	4
137	Multi-objective Optimization of Aluminum Anode Baking Process Employing a Response Surface Methodology. Energy Procedia, 2019, 158, 5541-5550.	1.8	4
138	Quantification of Plasticity and Damage in Berea Sandstone through Monotonic and Cyclic Triaxial Loading under High-Confinement Pressures. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	4
139	Constitutive Modeling of Fatigue Damage Response of Asphalt Concrete Materials. Transportation Research Record, 2013, 2373, 11-21.	1.0	3
140	Numerical Investigation of Turbulent Diffusion Flame in the Aluminum Anode Baking Furnace Employing Presumed PDF. Energy Procedia, 2017, 142, 4157-4162.	1.8	3
141	Highly electrically conductive carbon nanostructured mats fabricated out of aligned CNTs-based flakes. Diamond and Related Materials, 2020, 106, 107849.	1.8	3
142	Experimental Prediction of the Elastic Properties of Nanocomposite Cementitious Materials Based on Nanoindentation Measurements. Science of Advanced Materials, 2017, 9, 830-846.	0.1	3
143	A Micro-Damage Model for High Velocity Impact Using Combined Viscosity and Gradient Localization Limiters. , 2005, , 123.		2
144	Constitutive Modeling of Cyclic Viscoplastic Response of Asphalt Concrete. Transportation Research Record, 2013, 2373, 22-33.	1.0	2

#	Article	IF	CITATIONS
145	The Effect of Interfacial Transition Zone Properties on the Elastic Properties of Cementitious Nanocomposite Materials. Journal of Nanomaterials, 2015, 2015, 1-13.	1.5	2
146	Cohesive Zone Damage-Healing Model for Self-Healing Materials. Applied Mechanics and Materials, 0, 784, 111-118.	0.2	2
147	Microstructural Characterization and Thermomechanical Behavior of Additively Manufactured AlSi10Mg Material and Architected Cellular Structures. Minerals, Metals and Materials Series, 2020, , 165-173.	0.3	2
148	Scalable synthesis, characterization and testing of 3D architected gyroid graphene lattices from additively manufactured templates. Journal of Micromechanics and Molecular Physics, 2021, 06, 13-24.	0.7	2
149	A Dislocation Based Gradient Plasticity Theory With Applications to Size Effects. , 2005, , 69.		1
150	The effect of atomic force microscope probe size on indentation tests simulated using realistic surface forces. International Journal of Materials and Structural Integrity, 2010, 4, 160.	0.1	1
151	Modelling size effects in micro/nano-systems by including interfacial effects in a gradient plasticity framework. International Journal of Materials and Structural Integrity, 2010, 4, 278.	0.1	1
152	Thermo-mechanical Viscoelastic, Viscoplastic, and Viscodamage Model for Polymers and Polymer Composites. , 2011, , .		1
153	NONLOCAL GRADIENT-DEPENDENT CONSTITUTIVE MODEL FOR SIMULATING LOCALIZED DAMAGE AND FRACTURE OF VISCOPLASTIC SOLIDS UNDER HIGH-ENERGY IMPACTS. International Journal for Multiscale Computational Engineering, 2012, 10, 503-526.	0.8	1
154	Microstructural Modeling of Dual Phase Steel Using a Higher-Order Gradient Plasticity-Damage Model. Applied Mechanics and Materials, 0, 784, 119-128.	0.2	1
155	A Unified Continuum Damage Mechanics Model for Predicting the Mechanical Response of Asphalt Mixtures and Pavements. International Journal of Roads and Airports, 2011, 1, .	0.5	1
156	A Modified Gradient Plasticity Theory for Micro-Bending and Micro-Torsion Size Effects. , 2004, , 233.		0
157	Comparison of the Strain Localization Approaches: Viscoplasticity Theory and Gradient Dependent Theory. , 2005, , 79.		Ο
158	Modeling Plasticity in Nanostructured Materials. , 2005, , .		0
159	Micro-Damage Constitutive Modeling and Numerical Simulation of Perforation of Targets by Projectiles. , 2007, , 549.		Ο
160	Modeling the Size and Interface Effects in Thin Metal Film-Substrate Systems Using the Strain Gradient Plasticity. , 2007, , 1023.		0
161	Nonlocal Microdamage Models for Mesh-Independent Predictions of Ballistic Limits in High Velocity Impacts. , 2009, , .		0
162	Nonlocal Gradient Plasticity Theory for Predicting Size Effects in Metallic Micro/Nano Pillars. , 2011, ,		0

#	Article	IF	CITATIONS
163	Nonlocal Constitutive Model for Simulating Localized Damage and Fracture of Viscoplastic Solids under High Energy Impacts. , 2011, , .		0
164	Finite Element Implementation of a Thermoviscoplastic Model for Ratcheting. , 2004, , .		0
165	Continuum-Based Modeling of Size Effects in Micro- and Nanostructured Materials. , 2013, , .		0