List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7781729/publications.pdf Version: 2024-02-01

RUDOLE EDELIND

#	Article	IF	CITATIONS
1	Variants of derivation modes for which purely catalytic P systems are computationally complete. Theoretical Computer Science, 2022, , .	0.5	1
2	P systems with limited number of objects. Journal of Membrane Computing, 2021, 3, 1-9.	1.0	7
3	When catalytic P systems with one catalyst can be computationally complete. Journal of Membrane Computing, 2021, 3, 170-181.	1.0	6
4	Relations between Control Mechanisms for Sequential Grammars1. Fundamenta Informaticae, 2021, 181, 239-271.	0.3	0
5	Variants of derivation modes for which catalytic P systems with one catalyst are computationally complete. Journal of Membrane Computing, 2021, 3, 233.	1.0	1
6	How derivation modes and halting conditions may influence the computational power of P systems. Journal of Membrane Computing, 2020, 2, 14-25.	1.0	11
7	A formal framework for spiking neural P systems. Journal of Membrane Computing, 2020, 2, 355-368.	1.0	26
8	A General Framework for Sequential Grammars with Control Mechanisms. Lecture Notes in Computer Science, 2019, , 1-34.	1.0	2
9	Variants of P systems with activation and blocking of rules. Natural Computing, 2019, 18, 593-608.	1.8	5
10	Tissue P Systems with Point Mutation Rules. Lecture Notes in Computer Science, 2019, , 33-56.	1.0	0
11	Variants of Networks of Evolutionary Processors with Polarizations and a Small Number of Processors. International Journal of Foundations of Computer Science, 2019, 30, 1005-1027.	0.8	5
12	Extended spiking neural P systems with white hole rules and their red–green variants. Natural Computing, 2018, 17, 297-310.	1.8	6
13	Chocolate P Automata. Lecture Notes in Computer Science, 2018, , 1-20.	1.0	0
14	Control Mechanisms for Array Grammars on Cayley Grids. Lecture Notes in Computer Science, 2018, , 1-33.	1.0	1
15	Sequential Grammars with Activation and Blocking of Rules. Lecture Notes in Computer Science, 2018, , 51-68.	1.0	2
16	P Systems with Activation and Blocking of Rules. Lecture Notes in Computer Science, 2018, , 1-15.	1.0	3
17	Contextual array grammars with matrix control, regular control languages, and tissue P systems control. Theoretical Computer Science, 2017, 682, 5-21.	0.5	8
18	Watson-Crick TOL Systems and Red-Green Register Machines. Fundamenta Informaticae, 2017, 155, 111-129.	0.3	4

#	Article	IF	CITATIONS
19	Non-Isometric Contextual Array Grammars and the Role of Regular Control and Local Selectors. Fundamenta Informaticae, 2017, 155, 209-232.	0.3	3
20	P Systems Working in Maximal Variants of the Set Derivation Mode. Lecture Notes in Computer Science, 2017, , 83-102.	1.0	9
21	Computational Completeness of Networks of Evolutionary Processors with Elementary Polarizations and a Small Number of Processors. Lecture Notes in Computer Science, 2017, , 140-151.	1.0	2
22	Variants of Spiking Neural P Systems with Energy Control. Proceedings of International Conference on Artificial Life and Robotics, 2017, 22, 603-606.	0.1	1
23	Computational completeness of complete, star-like, and linear hybrid networks of evolutionary processors with a small number of processors. Natural Computing, 2016, 15, 51-68.	1.8	4
24	The Finite Index Restriction Meets Hybrid Modes in Cooperating Distributed Grammar Systems. International Journal of Foundations of Computer Science, 2015, 26, 1167-1188.	0.8	1
25	Variants of Small Universal P Systems with Catalysts. Fundamenta Informaticae, 2015, 138, 227-250.	0.3	13
26	Catalytic and Purely Catalytic P Systems and P Automata: Control Mechanisms for Obtaining Computational Completeness. Fundamenta Informaticae, 2015, 136, 59-84.	0.3	6
27	Contextual array grammars and array P systems. Annals of Mathematics and Artificial Intelligence, 2015, 75, 5-26.	0.9	20
28	Bridging Deterministic P Systems and Conditional Grammars. Lecture Notes in Computer Science, 2015, , 63-76.	1.0	2
29	P Systems with Generalized Multisets Over Totally Ordered Abelian Groups. Lecture Notes in Computer Science, 2015, , 117-136.	1.0	3
30	Length P Systems. Fundamenta Informaticae, 2014, 134, 17-37.	0.3	3
31	Antimatter as a Frontier of Tractability in Membrane Computing. Fundamenta Informaticae, 2014, 134, 83-96.	0.3	4
32	Promoters and Inhibitors in Purely Catalytic P Systems. Lecture Notes in Computer Science, 2014, , 126-138.	1.0	1
33	Generating and accepting P systems with minimal left and right insertion and deletion. Natural Computing, 2014, 13, 257-268.	1.8	12
34	Five Nodes Are Sufficient for Hybrid Networks of Evolutionary Processors to Be Computationally Complete. Lecture Notes in Computer Science, 2014, , 1-13.	1.0	1
35	Matter and Anti-Matter in Membrane Systems. Lecture Notes in Computer Science, 2014, , 65-76.	1.0	13
36	P Systems with Anti-Matter. Lecture Notes in Computer Science, 2014, , 66-85.	1.0	9

#	Article	IF	CITATIONS
37	Priorities, Promoters and Inhibitors in Deterministic Non-cooperative P Systems. Lecture Notes in Computer Science, 2014, , 86-98.	1.0	2
38	P Systems with Toxic Objects. Lecture Notes in Computer Science, 2014, , 99-125.	1.0	9
39	Red–Green P Automata. Lecture Notes in Computer Science, 2014, , 139-157.	1.0	7
40	Flattening in (Tissue) P Systems. Lecture Notes in Computer Science, 2014, , 173-188.	1.0	20
41	P Systems with Anti-Matter. Lecture Notes in Computer Science, 2014, , 409-420.	1.0	0
42	A formalization of membrane systems with dynamically evolving structures. International Journal of Computer Mathematics, 2013, 90, 801-815.	1.0	12
43	Sequential P Systems with Regular Control. Lecture Notes in Computer Science, 2013, , 112-127.	1.0	11
44	Asynchronous and Maximally Parallel Deterministic Controlled Non-cooperative P Systems Characterize NFIN and coNFIN. Lecture Notes in Computer Science, 2013, , 101-111.	1.0	7
45	(Tissue) P Systems with Decaying Objects. Lecture Notes in Computer Science, 2013, , 1-25.	1.0	1
46	Sequential and maximally parallel multiset rewriting: reversibility and determinism. Natural Computing, 2012, 11, 95-106.	1.8	10
47	P Systems with Minimal Left and Right Insertion and Deletion. Lecture Notes in Computer Science, 2012, , 82-93.	1.0	5
48	(Tissue) P systems working in the k-restricted minimally or maximally parallel transition mode. Natural Computing, 2011, 10, 821-833.	1.8	19
49	A General Framework for Regulated Rewriting Based on the Applicability of Rules. Lecture Notes in Computer Science, 2011, , 35-53.	1.0	15
50	Transition and Halting Modes in (Tissue) P Systems. Lecture Notes in Computer Science, 2010, , 18-29.	1.0	1
51	Partial Halting and Minimal Parallelism Based on Arbitrary Rule Partitions. Fundamenta Informaticae, 2009, 91, 17-34.	0.3	15
52	Membrane Systems Using Noncooperative Rules with Unconditional Halting. Lecture Notes in Computer Science, 2009, , 129-136.	1.0	5
53	EXTENDED SPIKING NEURAL P SYSTEMS WITH DECAYING SPIKES AND/OR TOTAL SPIKING. International Journal of Foundations of Computer Science, 2008, 19, 1223-1234.	0.8	21
54	CD GRAMMAR SYSTEMS WITH REGULAR START CONDITIONS. International Journal of Foundations of Computer Science, 2008, 19, 767-779.	0.8	1

#	Article	IF	CITATIONS
55	PARTIAL HALTING IN P SYSTEMS. International Journal of Foundations of Computer Science, 2007, 18, 1215-1225.	0.8	7
56	How a membrane agent buys goods in a membrane store. Progress in Natural Science: Materials International, 2007, 17, 442-448.	1.8	5
57	Applications of membrane systems in distributed systems. Progress in Natural Science: Materials International, 2007, 17, 401-409.	1.8	1
58	Multiset random context grammars, checkers, and transducers. Theoretical Computer Science, 2007, 372, 136-151.	0.5	17
59	Tissue P Systems and (Mem)Brane Systems with Mate and Drip Operations Working on Strings. Electronic Notes in Theoretical Computer Science, 2007, 171, 105-115.	0.9	8
60	Partial Halting in P Systems Using Membrane Rules with Permitting Contexts. Lecture Notes in Computer Science, 2007, , 110-121.	1.0	3
61	A Formal Framework for Static (Tissue) P Systems. , 2007, , 271-284.		49
62	Membrane division, restricted membrane creation and object complexity in P systems. International Journal of Computer Mathematics, 2006, 83, 529-547.	1.0	5
63	P colonies and prescribed teams. International Journal of Computer Mathematics, 2006, 83, 569-592.	1.0	7
64	CELL/SYMBOL COMPLEXITY OF TISSUE P SYSTEMS WITH SYMPORT/ANTIPORT RULES. International Journal of Foundations of Computer Science, 2006, 17, 3-25.	0.8	12
65	Computational Power of Symport/Antiport: History, Advances, and Open Problems. Lecture Notes in Computer Science, 2006, , 1-30.	1.0	20
66	Extended Spiking Neural P Systems. Lecture Notes in Computer Science, 2006, , 123-134.	1.0	19
67	Tissue P Systems with Communication Modes. Lecture Notes in Computer Science, 2006, , 170-182.	1.0	0
68	Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Science, 2005, 330, 251-266.	0.5	97
69	Tissue P systems with channel states. Theoretical Computer Science, 2005, 330, 101-116.	0.5	146
70	P systems with active membranes and without polarizations. Soft Computing, 2005, 9, 657-663.	2.1	5
71	Modelling artificial life by attributed eco-array grammars. Artificial Life and Robotics, 2005, 9, 63-66.	0.7	0
72	Tissue P Systems with Antiport Rules and Small Numbers of Symbols and Cells. Lecture Notes in Computer Science, 2005, , 100-111.	1.0	22

#	Article	IF	CITATIONS
73	P SYSTEMS WORKING IN THE SEQUENTIAL MODE ON ARRAYS AND STRINGS. International Journal of Foundations of Computer Science, 2005, 16, 663-682.	0.8	7
74	OPTIMAL RESULTS FOR THE COMPUTATIONAL COMPLETENESS OF GEMMATING (TISSUE) P SYSTEMS. International Journal of Foundations of Computer Science, 2005, 16, 929-942.	0.8	1
75	P systems with local graph productions. New Generation Computing, 2004, 22, 365-375.	2.5	1
76	From regulated rewriting to computing with membranes: collapsing hierarchies. Theoretical Computer Science, 2004, 312, 143-188.	0.5	25
77	ï‰ -P Automata with Communication Rules. Lecture Notes in Computer Science, 2004, , 203-217.	1.0	13
78	P Automata with membrane channels. Artificial Life and Robotics, 2004, 8, 186-189.	0.7	0
79	On some operations on strings suggested by gene assembly in ciliates. New Generation Computing, 2002, 20, 279-293.	2.5	11
80	Acceptance of ω-Languages by Communicating Deterministic Turing Machines. , 2001, , 115-125.		3
81	Generalized P-Systems with Splicing and Cutting/Recombination. Grammars, 1999, 2, 189-199.	0.4	3
82	Generalized P-systems. Lecture Notes in Computer Science, 1999, , 281-292.	1.0	21
83	Control Mechanisms on #-Context-Free Array Grammars. , 1994, , 97-136.		24
84	Attributed elementary programmed graph grammars. Lecture Notes in Computer Science, 1992, , 75-84.	1.0	6
85	Init and anf operating on ω-languages. Information Processing Letters, 1983, 16, 265-269.	0.4	1
86	How to Obtain Computational Completeness in P Systems with One Catalyst. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 128, 47-61.	0.8	14
87	(Tissue) P Systems with Vesicles of Multisets. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 252, 11-25.	0.8	3
88	Graph-Controlled Insertion-Deletion Systems. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 31, 88-98.	0.8	30