
Elena Conti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7781408/publications.pdf Version: 2024-02-01

FLENA CONTL

#	Article	IF	CITATIONS
1	A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nature Structural and Molecular Biology, 2007, 14, 15-22.	8.2	381
2	Structural and Biochemical Insights to the Role of the CCR4-NOT Complex and DDX6 ATPase in MicroRNA Repression. Molecular Cell, 2014, 54, 751-765.	9.7	276
3	Molecular Mechanisms for the RNA-Dependent ATPase Activity of Upf1 and Its Regulation by Upf2. Molecular Cell, 2011, 41, 693-703.	9.7	243
4	The Yeast Exosome Functions as a Macromolecular Cage to Channel RNA Substrates for Degradation. Cell, 2009, 139, 547-559.	28.9	225
5	Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature, 2013, 495, 70-75.	27.8	213
6	The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nature Structural and Molecular Biology, 2005, 12, 575-581.	8.2	198
7	Structure of the Active Subunit of the Yeast Exosome Core, Rrp44: Diverse Modes of Substrate Recruitment in the RNase II Nuclease Family. Molecular Cell, 2008, 29, 717-728.	9.7	175
8	Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12139-12144.	7.1	129
9	Structural Model of a CRISPR RNA-Silencing Complex Reveals the RNA-Target Cleavage Activity in Cmr4. Molecular Cell, 2014, 56, 43-54.	9.7	129
10	RNA degradation paths in a 12-subunit nuclear exosome complex. Nature, 2015, 524, 54-58.	27.8	120
11	The cryo-EM structure of a ribosome–Ski2-Ski3-Ski8 helicase complex. Science, 2016, 354, 1431-1433.	12.6	108
12	Structural Basis of 3′ End RNA Recognition and Exoribonucleolytic Cleavage by an Exosome RNase PH Core. Molecular Cell, 2005, 20, 473-481.	9.7	104
13	The exosomeâ€binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO Journal, 2014, 33, 2829-2846.	7.8	102
14	Structure of a Human 4E-T/DDX6/CNOT1 Complex Reveals the Different Interplay of DDX6-Binding Proteins with the CCR4-NOT Complex. Cell Reports, 2015, 13, 703-711.	6.4	95
15	The conformational plasticity of eukaryotic <scp>RNA</scp> â€dependent <scp>ATP</scp> ases. FEBS Journal, 2015, 282, 850-863.	4.7	94
16	Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5–SMG7 and SMG6. Nucleic Acids Research, 2014, 42, 9447-9460.	14.5	92
17	Structure of the nuclear exosome captured on a maturing preribosome. Science, 2018, 360, 219-222.	12.6	92
18	The RNA exosome and proteasome: common principles of degradation control. Nature Reviews Molecular Cell Biology, 2013, 14, 654-660.	37.0	74

Elena Conti

#	Article	IF	CITATIONS
19	Structure of a Cytoplasmic 11-Subunit RNA Exosome Complex. Molecular Cell, 2016, 63, 125-134.	9.7	72
20	The Molecular Architecture of the TRAMP Complex Reveals the Organization and Interplay of Its Two Catalytic Activities. Molecular Cell, 2014, 55, 856-867.	9.7	69
21	RNA channelling by the eukaryotic exosome. EMBO Reports, 2010, 11, 936-942.	4.5	68
22	Structure of the RNA Helicase MLE Reveals the Molecular Mechanisms for Uridine Specificity and RNA-ATP Coupling. Molecular Cell, 2015, 60, 487-499.	9.7	67
23	Reconstitution of the complete pathway of ITS2 processing at the pre-ribosome. Nature Communications, 2017, 8, 1787.	12.8	66
24	Mpp6 Incorporation in the Nuclear Exosome Contributes to RNA Channeling through the Mtr4 Helicase. Cell Reports, 2017, 20, 2279-2286.	6.4	49
25	Distinct and evolutionary conserved structural features of the human nuclear exosome complex. ELife, 2018, 7, .	6.0	47
26	The structure of the Pan2–Pan3 core complex reveals cross-talk between deadenylase and pseudokinase. Nature Structural and Molecular Biology, 2014, 21, 591-598.	8.2	45
27	Sen1 has unique structural features grafted on the architecture of the Upf1â€like helicase family. EMBO Journal, 2017, 36, 1590-1604.	7.8	45
28	Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53. Rna, 2017, 23, 1780-1787.	3.5	42
29	The MTR4 helicase recruits nuclear adaptors of the human RNA exosome using distinct arch-interacting motifs. Nature Communications, 2019, 10, 3393.	12.8	41
30	Structure of the RBM7–ZCCHC8 core of the NEXT complex reveals connections to splicing factors. Nature Communications, 2016, 7, 13573.	12.8	38
31	Structure and RNA-binding properties of the Type III-A CRISPR-associated protein Csm3. RNA Biology, 2013, 10, 1670-1678.	3.1	35
32	Architecture of the Ubiquitylation Module of the Yeast Ccr4-Not Complex. Structure, 2015, 23, 921-928.	3.3	33
33	InsP6 binding to PIKK kinases revealed by the cryo-EM structure of an SMG1–SMG8–SMG9 complex. Nature Structural and Molecular Biology, 2019, 26, 1089-1093.	8.2	30
34	Saccharomyces cerevisiae Ski7 Is a GTP-Binding Protein Adopting the Characteristic Conformation of Active Translational GTPases. Structure, 2015, 23, 1336-1343.	3.3	26
35	Reconstitution of 3′ end processing of mammalian pre-mRNA reveals a central role of RBBP6. Genes and Development, 2022, 36, 195-209.	5.9	26
36	Analysis of protein–RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry. Methods, 2015, 89, 138-148.	3.8	25

Elena Conti

#	Article	IF	CITATIONS
37	Structure of substrate-bound SMG1-8-9 kinase complex reveals molecular basis for phosphorylation specificity. ELife, 2020, 9, .	6.0	25
38	Structural basis for the activation of the <i>C. elegans</i> noncanonical cytoplasmic poly(A)-polymerase GLD-2 by GLD-3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8614-8619.	7.1	23
39	The human SKI complex regulates channeling of ribosome-bound RNA to the exosome via an intrinsic gatekeeping mechanism. Molecular Cell, 2022, 82, 756-769.e8.	9.7	23
40	Structural insights into the nucleic acid remodeling mechanisms of the yeast THO-Sub2 complex. ELife, 2020, 9, .	6.0	21
41	Cryo-EM reconstructions of inhibitor-bound SMG1 kinase reveal an autoinhibitory state dependent on SMG8. ELife, 2021, 10, .	6.0	18
42	To Process or to Decay: A Mechanistic View of the Nuclear RNA Exosome. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 155-163.	1.1	16
43	Structure and regulation of the nuclear exosome targeting complex guides RNA substrates to the exosome. Molecular Cell, 2022, 82, 2505-2518.e7.	9.7	15
44	Molecular Mechanism of Processive $3\hat{e}^2$ to $5\hat{e}^2$ RNA Translocation in the Active Subunit of the RNA Exosome Complex. Journal of the American Chemical Society, 2016, 138, 4069-4078.	13.7	11
45	Structure of a SMG8–SMG9 complex identifies a G-domain heterodimer in the NMD effector proteins. Rna, 2017, 23, 1028-1034.	3.5	10
46	Purification and Reconstitution of the S. cerevisiae TRAMP and Ski Complexes for Biochemical and Structural Studies. Methods in Molecular Biology, 2020, 2062, 491-513.	0.9	1
47	Molecular mechanisms of mRNA degradation. FASEB Journal, 2008, 22, 247.3.	0.5	О