
Zheng Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7781170/publications.pdf Version: 2024-02-01

ZHENIC VIIAN

#	Article	IF	CITATIONS
1	The Rice Tapetum Degeneration Retardation Gene Is Required for Tapetum Degradation and Anther Development. Plant Cell, 2006, 18, 2999-3014.	6.6	615
2	Genome-Wide Analysis of Basic/Helix-Loop-Helix Transcription Factor Family in Rice and Arabidopsis. Plant Physiology, 2006, 141, 1167-1184.	4.8	527
3	The <i>ABORTED MICROSPORES</i> Regulatory Network Is Required for Postmeiotic Male Reproductive Development in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2010, 22, 91-107.	6.6	294
4	<i>>PERSISTENT TAPETAL CELL1</i> Encodes a PHD-Finger Protein That Is Required for Tapetal Cell Death and Pollen Development in Rice Â. Plant Physiology, 2011, 156, 615-630.	4.8	256
5	Jasmonic acid regulates spikelet development in rice. Nature Communications, 2014, 5, 3476.	12.8	229
6	Molecular Control of Grass Inflorescence Development. Annual Review of Plant Biology, 2014, 65, 553-578.	18.7	222
7	<i>ABORTED MICROSPORES</i> Acts as a Master Regulator of Pollen Wall Formation in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2014, 26, 1544-1556.	6.6	211
8	The FLORAL ORGAN NUMBER4 Gene Encoding a Putative Ortholog of Arabidopsis CLAVATA3 Regulates Apical Meristem Size in Rice. Plant Physiology, 2006, 142, 1039-1052.	4.8	198
9	<i>RETARDED PALEA1</i> Controls Palea Development and Floral Zygomorphy in Rice Â. Plant Physiology, 2009, 149, 235-244.	4.8	189
10	Tapetum Degeneration Retardation is Critical for Aliphatic Metabolism and Gene Regulation during Rice Pollen Development. Molecular Plant, 2008, 1, 599-610.	8.3	173
11	The Putative RNA-Dependent RNA Polymerase RDR6 Acts Synergistically with ASYMMETRIC LEAVES1 and 2 to Repress BREVIPEDICELLUS and MicroRNA165/166 in Arabidopsis Leaf Development. Plant Cell, 2005, 17, 2157-2171.	6.6	168
12	Roles of jasmonate signalling in plant inflorescence and flower development. Current Opinion in Plant Biology, 2015, 27, 44-51.	7.1	135
13	<i>RICE MORPHOLOGY DETERMINANT</i> Encodes the Type II Formin FH5 and Regulates Rice Morphogenesis Â. Plant Cell, 2011, 23, 681-700.	6.6	101
14	Development of japonica Photo-Sensitive Genic Male Sterile Rice Lines by Editing Carbon Starved Anther Using CRISPR/Cas9. Journal of Genetics and Genomics, 2016, 43, 415-419.	3.9	99
15	Biphasic regulation of the transcription factor <scp>ABORTED MICROSPORES</scp> (<scp>AMS</scp>) is essential for tapetum and pollen development in Arabidopsis. New Phytologist, 2017, 213, 778-790.	7.3	94
16	Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development. Molecular Plant, 2015, 8, 1366-1384.	8.3	87
17	Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Research, 2006, 16, 507-518.	12.0	41
18	Development of genomeâ€wide insertion/deletion markers in rice based on graphic pipeline platform. Journal of Integrative Plant Biology, 2015, 57, 980-991.	8.5	41

ZHENG YUAN

#	Article	IF	CITATIONS
19	Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers. Frontiers in Plant Science, 2017, 8, 256.	3.6	41
20	A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytologist, 2022, 234, 494-512.	7.3	41
21	Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding. Journal of Genetics and Genomics, 2020, 47, 273-280.	3.9	29
22	OsMADS32 interacts with Plâ€like proteins and regulates rice flower development. Journal of Integrative Plant Biology, 2015, 57, 504-513.	8.5	25
23	Overexpression of the Arabidopsis Gene <i>UPRIGHT ROSETTE</i> Reveals a Homeostatic Control for Indole-3-Acetic Acid Â. Plant Physiology, 2010, 153, 1311-1320.	4.8	22
24	Characterization of factors underlying the metabolic shifts in developing kernels of colored maize. Scientific Reports, 2016, 6, 35479.	3.3	22
25	An array of 60,000 antibodies for proteome-scale antibody generation and target discovery. Science Advances, 2020, 6, eaax2271.	10.3	22
26	Image-Based On-Panicle Rice [Oryza sativa L.] Grain Counting with a Prior Edge Wavelet Correction Model. Agronomy, 2018, 8, 91.	3.0	18
27	Panicle Development. , 2013, , 279-295.		18
28	Development of methods for effective identification of CRISPR/Cas9-induced indels in rice. Plant Cell Reports, 2019, 38, 503-510.	5.6	15
29	The OsJAZ1 degron modulates jasmonate signaling sensitivity during rice development. Development (Cambridge), 2019, 146, .	2.5	14
30	Molecular and genetic pathways for optimizing spikelet development and grain yield. ABIOTECH, 2020, 1, 276-292.	3.9	13
31	Panicle-3D: Efficient Phenotyping Tool for Precise Semantic Segmentation of Rice Panicle Point Cloud. Plant Phenomics, 2021, 2021, 9838929.	5.9	13
32	<i>Carbon Starved Anther</i> modulates sugar and ABA metabolism to protect rice seed germination and seedling fitness. Plant Physiology, 2021, 187, 2405-2418.	4.8	11
33	Ectopic expression of OsJAZ6, which interacts with OsJAZ1, alters JA signaling and spikelet development in rice. Plant Journal, 2021, 108, 1083-1096.	5.7	10
34	The GAOLAOZHUANGREN2 gene is required for normal glucose response and development of Arabidopsis. Journal of Plant Research, 2004, 117, 473-476.	2.4	9
35	Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes. Journal of Experimental Botany, 2021, 72, 2434-2449.	4.8	9
36	Expression and purification of the synthetic preS1 gene of Hepatitis B Virus with preferred Escherichia coli codon preference. Protein Expression and Purification, 2006, 48, 74-80.	1.3	8

ZHENG YUAN

#	Article	IF	CITATIONS
37	Genomeâ€wide Expression Profiling in Seedlings of the <i>Arabidopsis</i> Mutant <i>uro</i> that is Defective in the Secondary Cell Wall Formation. Journal of Integrative Plant Biology, 2007, 49, 1754-1762.	8.5	8
38	Generating Photoperiod-Sensitive Genic Male Sterile Rice Lines with CRISPR/Cas9. Methods in Molecular Biology, 2019, 1917, 97-107.	0.9	8
39	Embryogenesis and seed development in Sinomanglietia glauca (Magnoliaceae). Journal of Plant Research, 2006, 119, 163-166.	2.4	7
40	Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding. PLoS ONE, 2016, 11, e0147187.	2.5	7
41	Effective identification of CRISPR/Cas9-induced and naturally occurred mutations in rice using a multiplex ligation-dependent probe amplification-based method. Theoretical and Applied Genetics, 2020, 133, 2323-2334.	3.6	7
42	Synthetic biosensor for mapping dynamic responses and spatioâ€ŧemporal distribution of jasmonate in rice. Plant Biotechnology Journal, 2021, 19, 2392-2394.	8.3	7
43	Robust image restoration for rotary motion blur based on frequency analysis. Optical Engineering, 2008, 47, 097004.	1.0	5
44	DELAYED FLOWERING, an Arabidopsis Gene That Acts in the Autonomous Flowering Promotion Pathway and Is Required for Normal Development. Journal of Integrative Plant Biology, 2006, 48, 27-34.	8.5	3
45	Field Phenotyping Robot Design and Validation for the Crop Breeding. IFAC-PapersOnLine, 2016, 49, 281-286.	0.9	3
46	The Development of DNA Based Methods for the Reliable and Efficient Identification ofNicotiana tabacumin Tobacco and Its Derived Products. International Journal of Analytical Chemistry, 2016, 2016, 1-6.	1.0	1
47	Robust image restoration for rotary motion degradations and the motion parameter identification. , 2008, , .		0