Qingliang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7781086/publications.pdf

Version: 2024-02-01

98
56
g-index
4225
citing authors

#	Article	IF	CITATIONS
1	Theoretical analysis and numerical simulation of electromagnetic parameters of Fe-C coaxial single fiber. Journal of Magnetism and Magnetic Materials, 2017, 432, 154-163.	2.3	2
2	Applications of Calorimetry on Polymer Nanocomposites., 2016,, 243-254.		0
3	Selectively assembled 2D microarrays from binary nanocrystals. CrystEngComm, 2016, 18, 3008-3014.	2.6	6
4	Mössbauer spectroscopy of polymer nanocomposites. , 2016, , 393-409.		3
5	Manipulating the dimensional assembly pattern and crystalline structures of iron oxide nanostructures with a functional polyolefin. Nanoscale, 2016, 8, 1915-1920.	5.6	4
6	Study of the Synergistic Effect of Nanoporous Nickel Phosphates on Novel Intumescent Flame Retardant Polypropylene Composites. Journal of Spectroscopy, 2015, 2015, 1-7.	1.3	21
7	Carboxyl Multiwalled Carbonâ€Nanotubeâ€Stabilized Palladium Nanocatalysts toward Improved Methanol Oxidation Reaction. ChemElectroChem, 2015, 2, 559-570.	3.4	49
8	Enhanced flame retardancy of cotton fabrics with a novel intumescent flame-retardant finishing system. Fibers and Polymers, 2015, 16, 388-396.	2.1	39
9	Animal Feeds Extracted from Excess Sludge by Enzyme, Acid and Base Hydrolysis Processes. ACS Sustainable Chemistry and Engineering, 2015, 3, 2084-2091.	6.7	16
10	Transparent anhydride–cured epoxy nanocomposites reinforced with polyaniline stabilized nanosilica. Journal of Materials Chemistry C, 2015, 3, 8152-8165.	5. 5	45
11	Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites. Superlattices and Microstructures, 2015, 85, 305-320.	3.1	39
12	Multiwalled Carbon Nanotubes Composited with Palladium Nanocatalysts for Highly Efficient Ethanol Oxidation. Journal of the Electrochemical Society, 2015, 162, F755-F763.	2.9	36
13	Electrically Conductive Polypropylene Nanocomposites with Negative Permittivity at Low Carbon Nanotube Loading Levels. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6125-6138.	8.0	153
14	Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation. Electrochimica Acta, 2015, 184, 452-465.	5.2	27
15	Ultrafine FePd Nanoalloys Decorated Multiwalled Cabon Nanotubes toward Enhanced Ethanol Oxidation Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23920-23931.	8.0	56
16	Advanced asymmetric supercapacitors based on CNT@Ni(OH) ₂ core–shell composites and 3D graphene networks. Journal of Materials Chemistry A, 2015, 3, 19545-19555.	10.3	138
17	Polypyrrole doped epoxy resin nanocomposites with enhanced mechanical properties and reduced flammability. Journal of Materials Chemistry C, 2015, 3, 162-176.	5 . 5	88
18	Flameâ€Retardant Polypropylene/Multiwall Carbon Nanotube Nanocomposites: Effects of Surface Functionalization and Surfactant Molecular Weight. Macromolecular Chemistry and Physics, 2014, 215, 327-340.	2.2	75

#	Article	IF	CITATIONS
19	Magnetic Polystyrene Nanocomposites Reinforced with Magnetite Nanoparticles. Macromolecular Materials and Engineering, 2014, 299, 485-494.	3.6	28
20	Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. Nanoscale, 2014, 6, 181-189.	5 . 6	77
21	Electromagnetic Field Absorbing Polypropylene Nanocomposites with Tuned Permittivity and Permeability by Nanoiron and Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 24784-24796.	3.1	86
22	One-pot synthesis of size- and morphology-controlled 1-D iron oxide nanochains with manipulated magnetic properties. Chemical Communications, 2014, 50, 201-203.	4.1	28
23	Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. Journal of Materials Chemistry C, 2014, 2, 9478-9488.	5.5	92
24	Unusual Function of Modified Polyolefins for Manipulating Magnetic Nanostructures. Jom, 2014, 66, 655-659.	1.9	1
25	Highly Monodisperse Subâ€microspherical Poly(glycidyl methacrylate) Nanocomposites with Highly Stabilized Gold Nanoparticles. Macromolecular Chemistry and Physics, 2014, 215, 1098-1106.	2.2	13
26	Synthesis of Highly Efficient Flame Retardant High-Density Polyethylene Nanocomposites with Inorgano-Layered Double Hydroxides As Nanofiller Using Solvent Mixing Method. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5094-5104.	8.0	110
27	Strain Sensitive Polyurethane Nanocomposites Reinforced with Multiwalled Carbon Nanotubes. Energy and Environment Focus, 2014, 3, 85-93.	0.3	11
28	Strengthened magnetic epoxy nanocomposites with protruding nanoparticles onÂthe graphene nanosheets. Polymer, 2013, 54, 3594-3604.	3.8	150
29	Catalytic and synergistic effects on thermal stability and combustion behavior of polypropylene: influence of maleic anhydride grafted polypropylene stabilized cobalt nanoparticles. Journal of Materials Chemistry A, 2013, 1, 13064.	10.3	47
30	Iron-core carbon-shell nanoparticles reinforced electrically conductive magnetic epoxy resin nanocomposites with reduced flammability. RSC Advances, 2013, 3, 9453.	3.6	49
31	An overview of the engineered graphene nanostructures and nanocomposites. RSC Advances, 2013, 3, 22790.	3.6	180
32	Morphology and phase controlled cobalt nanostructures in magnetic polypropylene nanocomposites: the role of alkyl chain-length in maleic anhydride grafted polypropylene. Chemical Communications, 2013, 49, 2679.	4.1	34
33	Flame-Retardant Electrical Conductive Nanopolymers Based on Bisphenol F Epoxy Resin Reinforced with Nano Polyanilines. ACS Applied Materials & Samp; Interfaces, 2013, 5, 898-910.	8.0	179
34	Fluorescent electrospun polyvinyl alcohol/CdSe@ZnS nanocomposite fibers. Journal of Composite Materials, 2013, 47, 3175-3185.	2.4	39
35	Giant Magnetoresistive Phosphoric Acid Doped Polyaniline–Silica Nanocomposites. Journal of Physical Chemistry C, 2013, 117, 6426-6436.	3.1	70
36	Polyaniline stabilized barium titanate nanoparticles reinforced epoxy nanocomposites with high dielectric permittivity and reduced flammability. Journal of Materials Chemistry C, 2013, 1, 2886.	5 . 5	102

#	Article	IF	CITATIONS
37	Flame-Retardant Epoxy Resin Nanocomposites Reinforced with Polyaniline-Stabilized Silica Nanoparticles. Industrial & Engineering Chemistry Research, 2013, 52, 7718-7728.	3.7	155
38	Magnetically Soft and Hard Polypropylene/Cobalt Nanocomposites: Role of Maleic Anhydride Grafted Polypropylene. Macromolecules, 2013, 46, 2357-2368.	4.8	51
39	Magnetic Polyolefin-based Nanocomposites. Materials Research Society Symposia Proceedings, 2013, 1499, 1.	0.1	0
40	Property manipulated polypropylene–iron nanocomposites with maleic anhydride polypropylene. Journal of Materials Chemistry, 2012, 22, 15928.	6.7	27
41	Magnetic high density polyethylene nanocomposites reinforced with in-situ synthesized Fe@FeO core-shell nanoparticles. Polymer, 2012, 53, 3642-3652.	3.8	83
42	Evaluation of three flame retardant (FR) grey cotton blend nonwoven fabrics using micro-scale combustion calorimeter. Journal of Fire Sciences, 2012, 30, 187-200.	2.0	11
43	Textile heat release properties measured by microscale combustion calorimetry: experimental repeatability. Fire and Materials, 2012, 36, 127-137.	2.0	37
44	Morphology―and Phaseâ€Controlled Iron Oxide Nanoparticles Stabilized with Maleic Anhydride Grafted Polypropylene. Angewandte Chemie - International Edition, 2012, 51, 8842-8845.	13.8	65
45	Cross-Linking Cotton Cellulose by the Combination of Maleic Acid and Sodium Hypophosphite. 2. Fabric Fire Performance. Industrial & Engineering Chemistry Research, 2011, 50, 5889-5897.	3.7	29
46	Applications of micro-scale combustion calorimetry to the studies of cotton and nylon fabrics treated with organophosphorus flame retardants. Journal of Analytical and Applied Pyrolysis, 2011, 91, 125-133.	5.5	64
47	Flame retardant finishing of cotton fleece: part VII. Polycarboxylic acids with different numbers of functional group. Cellulose, 2010, 17, 859-870.	4.9	28
48	Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polymer Degradation and Stability, 2010, 95, 108-115.	5.8	177
49	Cross-Linking Cotton Cellulose by the Combination of Maleic Acid and Sodium Hypophosphite. 1. Fabric Wrinkle Resistance. Industrial & Engineering Chemistry Research, 2010, 49, 8325-8332.	3.7	63
50	Flammability and Thermal Properties of a Novel Intumescent Flame Retardant Polypropylene. Journal of Fire Sciences, 2009, 27, 303-321.	2.0	23
51	Synergistic effects of polyhedral oligomeric silsesquioxane (POSS) and oligomeric bisphenyl A bis(diphenyl phosphate) (BDP) on thermal and flame retardant properties of polycarbonate. Journal of Materials Science, 2009, 44, 1308-1316.	3.7	96
52	The bonding of a hydroxy-functional organophosphorus oligomer to nylon fabric using the formaldehyde derivatives of urea and melamine as the bonding agents. Polymer Degradation and Stability, 2009, 94, 1023-1031.	5.8	42
53	Study on thermal degradation and combustion behaviors of PC/POSS hybrids. Polymer Degradation and Stability, 2008, 93, 627-639.	5.8	139
54	Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. Journal of Materials Science, 2008, 43, 1057-1062.	3.7	143

QINGLIANG HE

#	Article	IF	CITATION
55	Study of nylon 66–clay nanocomposites via condensation polymerization. Colloid and Polymer Science, 2008, 286, 721-727.	2.1	20
56	Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polymers for Advanced Technologies, 2008, 19, 1077-1083.	3.2	185
57	Preparation, thermal and flammability properties of a novel form-stable phase change materials based on high density polyethylene/poly(ethylene-co-vinyl acetate)/organophilic montmorillonite nanocomposites/paraffin compounds. Energy Conversion and Management, 2008, 49, 2055-2062.	9.2	68
58	Study on Crystallization, Thermal and Flame Retardant Properties of Nylon 66/Organoclay Nanocomposites by in situ Polymerization. Journal of Fire Sciences, 2008, 26, 475-492.	2.0	26