
Ximiao He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7780948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel multiplex assay system based on 10 methylation markers for forensic identification of body fluids. Journal of Forensic Sciences, 2022, 67, 136-148.	0.9	5
2	High-speed rail model reveals the gene tandem amplification mediated by short repeated sequence in eukaryote. Scientific Reports, 2022, 12, 2289.	1.6	0
3	Changes in transcriptomic landscape in human end-stage heart failure with distinct etiology. IScience, 2022, 25, 103935.	1.9	4
4	Exposure of mouse oocytes to N,Nâ€dimethylformamide impairs mitochondrial functions and reduces oocyte quality. Environmental Toxicology, 2022, 37, 1563-1574.	2.1	5
5	Aberrant Expression of Mitochondrial SAM Transporter SLC25A26 Impairs Oocyte Maturation and Early Development in Mice. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-20.	1.9	4
6	Ppan is essential for preimplantation development in mice. Biology of Reproduction, 2022, , .	1.2	1
7	Genome-Wide Screen and Validation of Microglia Pro-Inflammatory Mediators in Stroke. , 2021, 12, 786.		17
8	Exogenous Coronavirus Interacts With Endogenous Retrotransposon in Human Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 609160.	1.8	32
9	Two reactive behaviors of chondrocytes in an IL-1β-induced inflammatory environment revealed by the single-cell RNA sequencing. Aging, 2021, 13, 11646-11664.	1.4	6
10	Cleavage-embryo genes and transposable elements are regulated by histone variant H2A.X. Journal of Reproduction and Development, 2021, 67, 307-312.	0.5	4
11	A Genome-Wide Investigation of Effects of Aberrant DNA Methylation on the Usage of Alternative Promoters in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 780266.	1.3	5
12	High expression of TXNDC11 indicated unfavorable prognosis of glioma. Translational Cancer Research, 2021, 10, 5040-5051.	0.4	4
13	Midkine Prevents Calcification of Aortic Valve Interstitial Cells via Intercellular Crosstalk. Frontiers in Cell and Developmental Biology, 2021, 9, 794058.	1.8	6
14	Stable intronic sequence RNAs (sisRNAs) are selected regions in introns with distinct properties. BMC Genomics, 2020, 21, 287.	1.2	3
15	The impact factors of 3D genome organization. Scientia Sinica Vitae, 2020, 50, 465-483.	0.1	1
16	Transcriptome Sequencing Unravels Potential Biomarkers at Different Stages of Cerebral Ischemic Stroke. Frontiers in Genetics, 2019, 10, 814.	1.1	23
17	High levels of serum β2-microglobulin predict severity of coronary artery disease. BMC Cardiovascular Disorders, 2017, 17, 71.	0.7	21
18	The Epstein-Barr Virus B-ZIP Protein Zta Recognizes Specific DNA Sequences Containing 5-Methylcytosine and 5-Hydroxymethylcytosine. Biochemistry, 2017, 56, 6200-6210.	1.2	17

Χιμιάο Ηε

#	Article	IF	CITATIONS
19	Genome-Wide Transcriptional Regulation and Chromosome Structural Arrangement by GalR in E. coli. Frontiers in Molecular Biosciences, 2016, 3, 74.	1.6	12
20	5-Hydroxymethylcytosine in E-box motifs ACAT GTG and ACAC GTG increases DNA-binding of the B-HLH transcription factor TCF4. Integrative Biology (United Kingdom), 2016, 8, 936-945.	0.6	21
21	5-Methylcytosine (5mC) and 5-Hydroxymethylcytosine (5hmC) Enhance the DNA Binding of CREB1 to the C/EBP Half-Site Tetranucleotide GCAA. Biochemistry, 2016, 55, 6940-6948.	1.2	21
22	Integrating Epigenomics into the Understanding of Biomedical Insight. Bioinformatics and Biology Insights, 2016, 10, BBI.S38427.	1.0	22
23	GABPα Binding to Overlapping ETS and CRE DNA Motifs Is Enhanced by CREB1: Custom DNA Microarrays. G3: Genes, Genomes, Genetics, 2015, 5, 1909-1918.	0.8	4
24	A New Noncoding RNA Arranges Bacterial Chromosome Organization. MBio, 2015, 6, .	1.8	22
25	Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution. Genome Biology and Evolution, 2015, 7, 3155-3169.	1.1	20
26	Nucleosomes are enriched at the boundaries of hypomethylated regions (HMRs) in mouse dermal fibroblasts and keratinocytes. Epigenetics and Chromatin, 2014, 7, 34.	1.8	4
27	High-resolution genome-wide DNA methylation maps of mouse primary female dermal fibroblasts and keratinocytes. Epigenetics and Chromatin, 2014, 7, 35.	1.8	12
28	Contribution of nucleosome binding preferences and co-occurring DNA sequences to transcription factor binding. BMC Genomics, 2013, 14, 428.	1.2	20
29	CG methylated microarrays identify a novel methylated sequence bound by the CEBPB ATF4 heterodimer that is active in vivo. Genome Research, 2013, 23, 988-997.	2.4	111
30	Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes and Development, 2013, 27, 251-260.	2.7	191
31	A Single-Nucleotide Polymorphism of Human Neuropeptide S Gene Originated from Europe Shows Decreased Bioactivity. PLoS ONE, 2013, 8, e83009.	1.1	8
32	Overlapping ETS and CRE Motifs (G/CCGGAAGTGACGTCA) Preferentially Bound by GABPα and CREB Proteins. G3: Genes, Genomes, Genetics, 2012, 2, 1243-1256.	0.8	11
33	Systematic evaluation of genome-wide methylated DNA enrichment using a CpG island array. BMC Genomics, 2011, 12, 10.	1.2	13
34	Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21593-21598.	3.3	126
35	The Most Redundant Sequences in Human CpG Island Library Are Derived from Mitochondrial Genome. Genomics, Proteomics and Bioinformatics, 2010, 8, 81-91.	3.0	2
36	MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Research, 2007, 36, D836-D841.	6.5	127

Χιμιάο Ηε

#	Article	IF	CITATIONS
37	BGI-RIS V2. , 2007, 406, 275-299.		4
38	The Genomes of Oryza sativa: A History of Duplications. PLoS Biology, 2005, 3, e38.	2.6	808
39	BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics. Nucleic Acids Research, 2004, 32, 377D-382.	6.5	108
40	ChickVD: a sequence variation database for the chicken genome. Nucleic Acids Research, 2004, 33, D438-D441.	6.5	33
41	SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic Acids Research, 2004, 33, D399-D402.	6.5	158
42	A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature, 2004, 432, 717-722.	13.7	391
43	The E Protein Is a Multifunctional Membrane Protein of SARS-CoV. Genomics, Proteomics and Bioinformatics, 2003, 1, 131-144.	3.0	41