
Johannes F De Boer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7780939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics Letters, 2003, 28, 2067.	3.3	1,463
2	Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Optics Letters, 1997, 22, 934.	3.3	1,032
3	Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Optics Letters, 2000, 25, 114.	3.3	664
4	In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Optics Express, 2004, 12, 367.	3.4	576
5	In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Optics Letters, 2004, 29, 480.	3.3	571
6	In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Optics Express, 2003, 11, 3490.	3.4	559
7	Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Optics Express, 2004, 12, 2435.	3.4	516
8	Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurology, The, 2010, 9, 921-932.	10.2	503
9	Review of polarization sensitive optical coherence tomography and Stokes vector determination. Journal of Biomedical Optics, 2002, 7, 359.	2.6	455
10	Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 13 µm. Optics Express, 2005, 13, 3931.	3.4	431
11	Comprehensive volumetric optical microscopy in vivo. Nature Medicine, 2006, 12, 1429-1433.	30.7	413
12	Motion artifacts in optical coherence tomography with frequency-domain ranging. Optics Express, 2004, 12, 2977.	3.4	369
13	Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Optics Letters, 1999, 24, 300.	3.3	367
14	Phase-resolved optical frequency domain imaging. Optics Express, 2005, 13, 5483.	3.4	367
15	High-speed fiber–based polarization-sensitive optical coherence tomography of in vivo human skin. Optics Letters, 2000, 25, 1355.	3.3	352
16	Spectral Domain Optical Coherence Tomography. JAMA Ophthalmology, 2005, 123, 1715.	2.4	340
17	In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 2001, 6, 474.	2.6	331
18	Polarization sensitive optical coherence tomography – a review [Invited]. Biomedical Optics Express, 2017, 8, 1838.	2.9	299

#	Article	IF	CITATIONS
19	Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography. Biomedical Optics Express, 2014, 5, 322.	2.9	275
20	Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography. , 2004, 45, 2606.		261
21	Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Optics Letters, 2005, 30, 2131.	3.3	258
22	Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Optics Letters, 2000, 25, 1358.	3.3	242
23	Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. Optics Letters, 2004, 29, 2512.	3.3	238
24	Analysis of Normal Retinal Nerve Fiber Layer Thickness by Age, Sex, and Race Using Spectral Domain Optical Coherence Tomography. Journal of Glaucoma, 2013, 22, 532-541.	1.6	231
25	Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography. Journal of the American College of Cardiology, 2007, 49, 1474-1481.	2.8	224
26	In vivo optical frequency domain imaging of human retina and choroid. Optics Express, 2006, 14, 4403.	3.4	222
27	Advances in Optical Coherence Tomography Imaging for Dermatology. Journal of Investigative Dermatology, 2004, 123, 458-463.	0.7	216
28	In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography. Optics Letters, 2002, 27, 1610.	3.3	215
29	Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Optics Express, 2004, 12, 4822.	3.4	204
30	Retinal nerve fiber layer thickness map determined from optical coherence tomography images. Optics Express, 2005, 13, 9480.	3.4	198
31	Real-time multi-functional optical coherence tomography. Optics Express, 2003, 11, 782.	3.4	191
32	Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography. Optics Express, 2007, 15, 18130.	3.4	174
33	Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. Journal of Biomedical Optics, 2004, 9, 292.	2.6	173
34	Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9, 287.	2.6	172
35	Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]. Biomedical Optics Express, 2017, 8, 3248.	2.9	168
36	High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Optics Express, 2008, 16, 1096.	3.4	160

#	Article	IF	CITATIONS
37	Determination of burn depth by polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9, 207.	2.6	155
38	Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Burns, 2004, 30, 511-517.	1.9	153
39	Observation of long-range intensity correlation in the transport of coherent light through a random medium. Physical Review Letters, 1990, 64, 2787-2790.	7.8	152
40	Characterization of dentin and enamel by use of optical coherence tomography. Applied Optics, 1999, 38, 2092.	2.1	140
41	Reproducibility of Retinal Nerve Fiber Layer Thickness Measurements Using Spectral Domain Optical Coherence Tomography. Journal of Glaucoma, 2011, 20, 470-476.	1.6	140
42	In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9, 121.	2.6	139
43	Amyloid-beta and phosphorylated tau in post-mortem Alzheimer's disease retinas. Acta Neuropathologica Communications, 2018, 6, 147.	5.2	138
44	High-speed, image-based eye tracking with a scanning laser ophthalmoscope. Biomedical Optics Express, 2012, 3, 2611.	2.9	127
45	Spectral shaping for non-Gaussian source spectra in optical coherence tomography. Optics Letters, 2002, 27, 406.	3.3	124
46	Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. Optics Express, 2012, 20, 20516.	3.4	124
47	Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO. Biomedical Optics Express, 2013, 4, 51.	2.9	124
48	Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media. Physics in Medicine and Biology, 1997, 42, 51-65.	3.0	118
49	Real-time eye motion compensation for OCT imaging with tracking SLO. Biomedical Optics Express, 2012, 3, 2950.	2.9	116
50	Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid. Optics Express, 2011, 19, 20886.	3.4	110
51	Optical frequency domain imaging with a rapidly swept laser in the 815–870 nm range. Optics Express, 2006, 14, 5937.	3.4	107
52	Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography. Optics Letters, 2002, 27, 1534.	3.3	105
53	Transmission and intensity correlations in wave propagation through random media. Physical Review B, 1992, 45, 658-666.	3.2	100
54	Fast microplastics identification with stimulated Raman scattering microscopy. Journal of Raman Spectroscopy, 2018, 49, 1136-1144.	2.5	100

#	Article	IF	CITATIONS
55	Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. Journal of Biomedical Optics, 2007, 12, 041205.	2.6	99
56	Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera. Optics Express, 2007, 15, 2421.	3.4	99
57	In Vivo Three-Dimensional Imaging of Neovascular Age-Related Macular Degeneration Using Optical Frequency Domain Imaging at 1050 nm. , 2008, 49, 4545.		95
58	Diagnostic Capability of Spectral-Domain Optical Coherence Tomography for Glaucoma. American Journal of Ophthalmology, 2012, 153, 815-826.e2.	3.3	90
59	Polarization effects in optical coherence tomography of various biological tissues. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5, 1200-1204.	2.9	88
60	Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides. Physical Review Letters, 2018, 120, 233901.	7.8	86
61	Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration. British Journal of Ophthalmology, 2009, 93, 176-181.	3.9	82
62	Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging. IEEE Photonics Technology Letters, 2004, 16, 293-295.	2.5	79
63	Histologic Correlation of In Vivo Optical Coherence Tomography Images of the Human Retina. American Journal of Ophthalmology, 2006, 141, 1165-1168.	3.3	77
64	Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography. Journal of Vision, 2008, 8, 17.	0.3	77
65	The Effect of Glaucoma on the Optical Attenuation Coefficient of the Retinal Nerve Fiber Layer in Spectral Domain Optical Coherence Tomography Images. , 2012, 53, 2424.		77
66	Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions. Biomedical Optics Express, 2014, 5, 2736.	2.9	77
67	High-speed imaging of human retina in vivo with swept-source optical coherence tomography. Optics Express, 2006, 14, 12902.	3.4	76
68	Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics. Optics Express, 2009, 17, 21634.	3.4	74
69	RPE-Normalized RNFL Attenuation Coefficient Maps Derived from Volumetric OCT Imaging for Glaucoma Assessment. , 2012, 53, 6102.		73
70	Correlation of Retinal Nerve Fiber Layer Thickness and Visual Fields in Glaucoma: A Broken Stick Model. American Journal of Ophthalmology, 2014, 157, 953-959.e2.	3.3	73
71	Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography. Optics Letters, 2005, 30, 2587.	3.3	72
72	In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2012, 17, 066012.	2.6	71

#	Article	IF	CITATIONS
73	Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography. Optics Express, 2005, 13, 5739.	3.4	69
74	Polarization-sensitive optical frequency domain imaging based on unpolarized light. Optics Express, 2011, 19, 552.	3.4	68
75	Compressive imaging through a multimode fiber. Optics Letters, 2018, 43, 5427.	3.3	68
76	Spectrally balanced detection for optical frequency domain imaging. Optics Express, 2007, 15, 16390.	3.4	67
77	Stable carrier generation and phase-resolved digital data processing in optical coherence tomography. Applied Optics, 2001, 40, 5787.	2.1	65
78	Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation. Biophysical Journal, 2007, 93, 1347-1353.	0.5	64
79	Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts. Optics Express, 2004, 12, 5614.	3.4	63
80	Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography. Optics Express, 2013, 21, 10048.	3.4	62
81	Polarization sensitive optical coherence tomography of the rabbit eye. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5, 1159-1167.	2.9	58
82	Imaging the Mucosa of the Human Vocal Fold with Optical Coherence Tomography. Annals of Otology, Rhinology and Laryngology, 2005, 114, 671-676.	1.1	57
83	Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods. Lasers in Medical Science, 2009, 24, 439-445.	2.1	56
84	Non-invasive determination of port wine stain anatomy and physiology for optimal laser treatment strategies. Physics in Medicine and Biology, 1997, 42, 937-950.	3.0	55
85	Endo-microscopy beyond the Abbe and Nyquist limits. Light: Science and Applications, 2020, 9, 81.	16.6	54
86	Optical coherence tomography of the rat cochlea. Journal of Biomedical Optics, 2000, 5, 367.	2.6	53
87	High speed miniature motorized endoscopic probe for optical frequency domain imaging. Optics Express, 2012, 20, 24132.	3.4	52
88	Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed Optical Frequency Domain Imaging. Optics Express, 2007, 15, 7117.	3.4	51
89	Imaging of Optic Nerve Head Drusen. Journal of Glaucoma, 2009, 18, 373-378.	1.6	50
90	Imaging the Human Vocal Folds in Vivo with Optical Coherence Tomography: A Preliminary Experience. Annals of Otology, Rhinology and Laryngology, 2006, 115, 277-284.	1.1	49

#	Article	IF	CITATIONS
91	Spectral Domain Optical Coherence Tomography and Glaucoma. International Ophthalmology Clinics, 2008, 48, 29-45.	0.7	49
92	Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography. Medical Image Analysis, 2015, 26, 146-158.	11.6	49
93	Probability Distribution of Multiple Scattered Light Measured in Total Transmission. Physical Review Letters, 1994, 73, 2567-2570.	7.8	47
94	Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm. Otolaryngology - Head and Neck Surgery, 2004, 130, 334-338.	1.9	46
95	In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter. Optics Express, 2010, 18, 14644.	3.4	44
96	Nanocolloidal albumin-IRDye 800CW: a near-infrared fluorescent tracer with optimal retention in the sentinel lymph node. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 1161-1168.	6.4	44
97	Altered Adipogenesis in Zebrafish Larvae Following High Fat Diet and Chemical Exposure Is Visualised by Stimulated Raman Scattering Microscopy. International Journal of Molecular Sciences, 2017, 18, 894.	4.1	44
98	Spectral-domain optical coherence phase and multiphoton microscopy. Optics Letters, 2007, 32, 623.	3.3	43
99	Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering. Optics Express, 2010, 18, 2858.	3.4	43
100	Adaptive ranging for optical coherence tomography. Optics Express, 2004, 12, 4025.	3.4	42
101	Polarization‣ensitive Optical Coherence Tomography Imaging of Benign and Malignant Laryngeal Lesions. Otolaryngology - Head and Neck Surgery, 2011, 145, 91-99.	1.9	40
102	Extracting structural features of rat sciatic nerve using polarization-sensitive spectral domain optical coherence tomography. Journal of Biomedical Optics, 2012, 17, 056012.	2.6	38
103	Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging. Optics Express, 2006, 14, 6739.	3.4	35
104	Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060â€,nm using optical frequency domain imaging. Journal of Biomedical Optics, 2009, 14, 024016.	2.6	35
105	Three dimensional tracking for volumetric spectral-domain optical coherence tomography. Optics Express, 2007, 15, 16808.	3.4	32
106	In vitro ovarian tumor growth and treatment response dynamics visualized with time-lapse OCT imaging. Optics Express, 2009, 17, 8892.	3.4	31
107	Diagnostic Capability of Peripapillary Retinal Thickness in Glaucoma Using 3D Volume Scans. American Journal of Ophthalmology, 2015, 159, 545-556.e2.	3.3	31
108	Polarization sensitive optical frequency domain imaging system for endobronchial imaging. Optics Express, 2015, 23, 3390.	3.4	29

#	Article	IF	CITATIONS
109	Transmission and reflection correlations of second harmonic waves in nonlinear random media. Physical Review Letters, 1993, 71, 3947-3950.	7.8	27
110	In vivooptical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography. Journal of Biomedical Optics, 2015, 20, 046002.	2.6	27
111	The search for a unique Raman signature of amyloid-beta plaques in human brain tissue from Alzheimer's disease patients. Analyst, The, 2020, 145, 1724-1736.	3.5	27
112	Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography. Journal of Glaucoma, 2017, 26, 450-458.	1.6	26
113	Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Retinal Nerve Fiber Layer Volume. Translational Vision Science and Technology, 2020, 9, 12.	2.2	26
114	Realâ€ŧime tracking of vocal fold injections with optical coherence tomography. Laryngoscope, 2009, 119, 2182-2186.	2.0	25
115	Effects of Age, Race, and Ethnicity on the Optic Nerve and Peripapillary Region Using Spectral-Domain OCT 3D Volume Scans. Translational Vision Science and Technology, 2018, 7, 12.	2.2	25
116	Parallel line scanning ophthalmoscope for retinal imaging. Optics Letters, 2015, 40, 5335.	3.3	24
117	Multimodal, label-free fluorescence and Raman imaging of amyloid deposits in snap-frozen Alzheimer's disease human brain tissue. Communications Biology, 2021, 4, 474.	4.4	24
118	Correlation of localized glaucomatous visual field defects and spectral domain optical coherence tomography retinal nerve fiber layer thinning using a modified structure–function map for OCT. Eye, 2015, 29, 525-533.	2.1	23
119	Stimulated Raman scattering microscopy with long wavelengths for improved imaging depth. Journal of Raman Spectroscopy, 2019, 50, 1321-1328.	2.5	23
120	In Vivo 3D Determination of Peripapillary Scleral and Retinal Layer Architecture Using Polarization-Sensitive Optical Coherence Tomography. Translational Vision Science and Technology, 2020, 9, 21.	2.2	23
121	In vivo multifunctional optical coherence tomography at the periphery of the lungs. Biomedical Optics Express, 2019, 10, 3070.	2.9	23
122	Hybrid retinal imager using line-scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Optics Express, 2006, 14, 12909.	3.4	22
123	Optimized signal-to-noise ratio with shot noise limited detection in Stimulated Raman Scattering microscopy. Journal of the European Optical Society-Rapid Publications, 2015, 10, 15022.	1.9	21
124	Measurement of Morphologic Changes Induced by Trauma with the Use of Coherence Tomography in Porcine Vocal Cords. Otolaryngology - Head and Neck Surgery, 2005, 133, 845-850.	1.9	19
125	Spectral-domain optical coherence phase microscopy for label-free multiplexed protein microarray assay. Biosensors and Bioelectronics, 2009, 25, 275-281.	10.1	19
126	High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model. Biomedical Optics Express, 2018, 9, 6186.	2.9	19

#	Article	IF	CITATIONS
127	Optic axis uniformity as a metric to improve the contrast of birefringent structures and analyze the retinal nerve fiber layer in polarization-sensitive optical coherence tomography. Optics Letters, 2019, 44, 3893.	3.3	19
128	Polarization Sensitive Optical Coherence Tomography for Bronchoscopic Airway Smooth Muscle Detection in Bronchial Thermoplasty-Treated Patients With Asthma. Chest, 2021, 160, 432-435.	0.8	18
129	In vivo polarization-sensitive optical coherence tomography of human burn scars: birefringence quantification and correspondence with histologically determined collagen density. Journal of Biomedical Optics, 2017, 22, 1.	2.6	18
130	Phase-based OCT angiography in diagnostic imaging of pediatric retinoblastoma patients: abnormal blood vessels in post-treatment regression patterns. Biomedical Optics Express, 2019, 10, 2213.	2.9	18
131	Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth. Optics Express, 2015, 23, 4935.	3.4	17
132	Ultimate resolution limits of speckle-based compressive imaging. Optics Express, 2021, 29, 3943.	3.4	16
133	Spectral Domain Optical Coherence Tomography. Techniques in Ophthalmology, 2006, 4, 170-174.	0.1	15
134	Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans. American Journal of Ophthalmology, 2017, 182, 180-193.	3.3	15
135	Precision analysis and optimization in phase decorrelation OCT velocimetry. Biomedical Optics Express, 2019, 10, 1297.	2.9	15
136	Diagnostic Capability of Three-Dimensional Macular Parameters for Glaucoma Using Optical Coherence Tomography Volume Scans. , 2018, 59, 4998.		14
137	Comment on "Optical-fiber-based Mueller optical coherence tomographyâ€: Optics Letters, 2004, 29, 2873.	3.3	13
138	Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning. Optics Express, 2012, 20, 15253.	3.4	13
139	Collecting optical coherence elastography depth profiles with a micromachined cantilever probe. Optics Letters, 2013, 38, 1476.	3.3	13
140	Coherent signal composition and global phase determination in signal multiplexed polarization sensitive optical coherence tomography. Optics Express, 2014, 22, 21382.	3.4	13
141	Labelâ€free stimulated Raman scattering imaging reveals silicone breast implant material in tissue. Journal of Biophotonics, 2020, 13, e201960197.	2.3	13
142	Phase-Resolved Doppler Optical Coherence Tomographic Features in Retinal Angiomatous Proliferation. American Journal of Ophthalmology, 2015, 160, 1044-1054.e1.	3.3	12
143	Diagnostic Capability of Peripapillary Retinal Volume Measurements in Glaucoma. Journal of Glaucoma, 2017, 26, 592-601.	1.6	12
144	Subretinal Fibrosis Detection Using Polarization Sensitive Optical Coherence Tomography. Translational Vision Science and Technology, 2020, 9, 13.	2.2	12

#	Article	IF	CITATIONS
145	<title>Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography</title> . , 1998, , .		11
146	Spectral-domain optical coherence reflectometric sensor for highly sensitive molecular detection. Optics Letters, 2007, 32, 2426.	3.3	11
147	Wide-Range Calibration of Corneal Backscatter Analysis by In Vivo Confocal Microscopy. , 2011, 52, 2136.		11
148	Field-based dynamic light scattering microscopy: theory and numerical analysis. Applied Optics, 2013, 52, 7618.	1.8	11
149	In vivo exploration of retinal nerve fiber layer morphology in Parkinson's disease patients. Journal of Neural Transmission, 2018, 125, 931-936.	2.8	11
150	Visibility of fiducial markers used for imageâ€guided radiation therapy on optical coherence tomography for registration with <scp>CT</scp> : An esophageal phantom study. Medical Physics, 2017, 44, 6570-6582.	3.0	10
151	Three-Dimensional Optical Coherence Tomography Imaging For Glaucoma Associated With Boston Keratoprosthesis Type I and II. Journal of Glaucoma, 2019, 28, 718-726.	1.6	10
152	Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography. Translational Vision Science and Technology, 2020, 9, 10.	2.2	10
153	Analysis of attenuation coefficient estimation in Fourier-domain OCT of semi-infinite media. Biomedical Optics Express, 2020, 11, 6093.	2.9	10
154	Digital micromirror device based ophthalmoscope with concentric circle scanning. Biomedical Optics Express, 2017, 8, 2766.	2.9	9
155	Optical coherence tomography velocimetry based on decorrelation estimation of phasor pair ratios (DEPPAIR). Biomedical Optics Express, 2019, 10, 5470.	2.9	9
156	Aberration calibration and correction with nano-scatterers in digital holographic microscopy for semiconductor metrology. Optics Express, 2021, 29, 38237.	3.4	9
157	Three-dimensional intracellular optical coherence phase imaging. Optics Letters, 2013, 38, 431.	3.3	8
158	Earlier Detection of Glaucoma Progression Using High-Density 3-Dimensional Spectral-Domain OCT Optic Nerve Volume Scans. Ophthalmology Glaucoma, 2021, 4, 604-616.	1.9	8
159	Label-free Raman and fluorescence imaging of amyloid plaques in human Alzheimer's disease brain tissue reveal carotenoid accumulations. Journal of Optics (United Kingdom), 2022, 24, 054005.	2.2	8
160	Classification and treatment follow-up of a juxtapapillary retinal hemangioblastoma with optical coherence tomography angiography. American Journal of Ophthalmology Case Reports, 2019, 15, 100472.	0.7	7
161	Treatment Effects in Retinal Angiomatous Proliferation Imaged with OCT Angiography. Ophthalmologica, 2019, 241, 143-153.	1.9	7
162	Investigation of methods to extract confocal function parameters for the depth resolved determination of attenuation coefficients using OCT in intralipid samples, titanium oxide phantoms, and in vivo human retinas. Biomedical Optics Express, 2021, 12, 6814.	2.9	7

#	Article	IF	CITATIONS
163	Two-Dimensional birefringence imaging in biological tissue using phase and polarization sensitive optical coherence tomography , 1998, , .		7
164	Peripapillary Retinal Thickness Maps in the Evaluation of Glaucoma Patients: A Novel Concept. ISRN Ophthalmology, 2011, 2011, 1-6.	1.7	7
165	Analysis of Neuroretinal Rim by Age, Race, and Sex Using High-Density 3-Dimensional Spectral-Domain Optical Coherence Tomography. Journal of Glaucoma, 2019, 28, 979-988.	1.6	6
166	Stimulated Raman scattering simulation for imaging optimization. Journal of the European Optical Society-Rapid Publications, 2021, 17, .	1.9	6
167	Spectral domain polarization-sensitive optical coherence tomography at 850 nm. , 2005, , .		5
168	In vivo retinal imaging for fixational eye motion detection using a high-speed digital micromirror device (DMD)-based ophthalmoscope. Biomedical Optics Express, 2018, 9, 591.	2.9	5
169	Optical coherence tomography to detect acute esophageal radiationâ€induced damage in mice: A validation study. Journal of Biophotonics, 2019, 12, e201800440.	2.3	5
170	Diagnostic Capability of 3D Peripapillary Retinal Volume for Glaucoma Using Optical Coherence Tomography Customized Software. Journal of Glaucoma, 2019, 28, 708-717.	1.6	5
171	Optical coherence tomography (OCT) to image active and inactive retinoblastomas as well as retinomas. Acta Ophthalmologica, 2020, 98, 158-165.	1.1	5
172	Attenuation coefficient estimation in Fourier-domain OCT of multi-layered phantoms. Biomedical Optics Express, 2021, 12, 2744.	2.9	5
173	Feasibility of using optical coherence tomography to detect acute radiation-induced esophageal damage in small animal models. Journal of Biomedical Optics, 2018, 23, 1.	2.6	5
174	Determination of the depth resolved Stokes parameters of light backscattered from turbid media using polarization sensitive optical coherence tomography. , 0, , .		4
175	Evaluation of osteoarthritis progression using polarization-sensitive optical coherence tomography. , 2004, 5318, 170.		4
176	Polarization Sensitive Optical Coherence Tomography. , 2013, , 857-888.		4
177	Direct Blood Flow Measurements in a Free RPE-Choroid Graft with Phase-Resolved Doppler OCT. Translational Vision Science and Technology, 2015, 4, 2.	2.2	4
178	Polarization Sensitive Optical Coherence Tomography. , 2015, , 1055-1101.		4
179	Feasibility of using optical coherence tomography to detect radiation-induced fibrosis and residual cancer extent after neoadjuvant chemo-radiation therapy: an ex vivo study. Biomedical Optics Express, 2018, 9, 4196.	2.9	4
180	Toward clinical elastography of dermal tissues: A medical device to probe skin's elasticity through suction, with subsurface imaging via optical coherence tomography. Review of Scientific Instruments, 2020, 91, 074101.	1.3	4

#	Article	IF	CITATIONS
181	Polarization-sensitive optical coherence tomography in end-stage lung diseases: an ex vivo pilot study. Biomedical Optics Express, 2021, 12, 6796.	2.9	4
182	Impact of coherence length on the field of view in dark-field holographic microscopy for semiconductor metrology: theoretical and experimental comparisons. Applied Optics, 2020, 59, 3498.	1.8	4
183	Pupil apodization in digital holographic microscopy for reduction of coherent imaging effects. , 2022, 1, 1202.		4
184	Intensity and field correlations in multiple scattered light. Physica B: Condensed Matter, 1991, 175, 17-24.	2.7	3
185	Third cumulant of the total transmission of diffuse waves. Physical Review E, 1995, 52, 2053-2065.	2.1	3
186	Latest developments in optical coherence tomography. , 0, , .		3
187	Detailed optical coherence tomography angiographic shortâ€ŧerm response of type 3 neovascularization to combined treatment with photodynamic therapy and intravitreal bevacizumab. Acta Ophthalmologica, 2021, 99, 207-214.	1.1	3
188	Disc Hemorrhages Are Associated With Localized Three-Dimensional Neuroretinal Rim Thickness Progression in Open-Angle Glaucoma. American Journal of Ophthalmology, 2022, 234, 188-198.	3.3	3
189	In vivo subdiffuse scanning laser oximetry of the human retina. Journal of Biomedical Optics, 2019, 24, 1.	2.6	3
190	Spectral/Fourier Domain Optical Coherence Tomography. , 2015, , 165-193.		3
191	Sensitivity analysis of Raman endoscopy with and without wavefront shaping. Optics Express, 2020, 28, 3779.	3.4	3
192	Visualizing early frog development with motion-sensitive 3-D optical coherence microscopy. , 2004, 2004, 5296-9.		2
193	Speckle averaging for optical coherence tomography by vibration of a thin water film. , 2004, 5316, 391.		2
194	In-vivo human retinal imaging with pulsed illumination spectral-domain optical coherence tomography. , 2007, , .		2
195	Correction of phase-error for phase-resolved k-clocked optical frequency domain imaging. , 2012, , .		2
196	Automatic estimation of retinal nerve fiber bundle orientation in SD-OCT images using a structure-oriented smoothing filter. Proceedings of SPIE, 2017, , .	0.8	2
197	Optimal wavelengths for subdiffuse scanning laser oximetry of the human retina. Journal of Biomedical Optics, 2018, 23, 1.	2.6	2
198	In vivo endoscopic multifunctional optical coherence tomography imaging of lungs periphery before and after bronchial thermoplasty. EPJ Web of Conferences, 2020, 238, 04002.	0.3	2

#	Article	IF	CITATIONS
199	Optical coherence tomography of the rat cochlea: preliminary investigations. , 1999, , .		1
200	<title>Optical frequency-domain reflectometry (OFDR) using an integrated fiber tunable filter</title> . , 1999, 3598, 56.		1
201	<title>Determination of burn depth by polarization-sensitive optical coherence tomography</title> . , 1999, , .		1
202	<title>Stokes parameters imaging of light reflected from biological tissue using polarization-sensitive optical coherence tomography</title> . , 1999, , .		1
203	Burn depth determination by high-speed fiber-based polarization-sensitive optical coherence tomography at 1.3 î¼m. , 2000, 3915, 243.		1
204	Imaging the internal structure of the guinea pig cochlea using optical coherence tomography at 1310 nm. , 2001, 4244, 372.		1
205	Burn depth determination in human skin using polarization-sensitive optical coherence tomography. , 2003, , .		1
206	Real-time multifunctional optical coherence tomography. , 2003, , .		1
207	Vector-based analysis for polarization-sensitive optical coherence tomography. , 2004, 5316, 397.		1
208	In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer using polarization sensitive optical coherence tomography. , 2004, , .		1
209	Noise-adaptive attenuation coefficient estimation in spectral domain optical coherence tomography data. , 2016, , .		1
210	Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans. Translational Vision Science and Technology, 2021, 10, 28.	2.2	1
211	Accurate estimation of the attenuation coefficient from axial point spread function corrected OCT scans of a single layer phantom. , 2018, , .		1
212	Optical Birefringence Imaging of Dentin and Enamel. , 1998, , AMC6.		0
213	Polarization sensitive optical coherence tomography of the rabbit eye. , 0, , .		Ο
214	Functional optical coherence tomography: technology and applications. , 0, , .		0
215	Fiber-based polarization-sensitive optical coherence tomography. , 2000, 3915, 68.		0
216	Monitoring laser treatment of port wine stains using phase-resolved optical Doppler tomography. , 2000, 3915, 237.		0

13

#	Article	IF	CITATIONS
217	Phase-resolved OCT/ODT for imaging tissue microcirculation. , 2000, , .		Ο
218	Simultaneous intensity, birefringence, and flow measurements using high-speed fiber-based optical coherence tomography. , 2002, , .		0
219	<title>In-vivo depth-resolved birefringence measurements of the human retina</title> . , 2002, 4611, 20.		0
220	In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. , 2003, , .		0
221	Ultrahigh-speed spectral domain optical coherence tomography of the human retina. , 2004, 5316, 233.		0
222	Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. , 2004, , .		0
223	Thickness and birefringence of retinal nerve fiber layer of healthy and glaucomatous subjects measured with polarization-sensitive optical coherence tomography. , 2004, 5314, 179.		0
224	Polarization-sensitive optical coherence tomography with a scanning fiber optic probe. , 2004, , .		0
225	Fluid flow analysis in microfluidic devices by spectral-domain optical Doppler tomography. , 2005, , .		Ο
226	Fluid flow analysis in microfluidic devices by spectral-domain optical Doppler tomography. , 2005, 5692, 174.		0
227	Endoscopic imaging of the human vocal cords using polarization-sensitive optical coherence tomography. , 2005, 5686, 307.		0
228	Optical devices for biomedical applications. , 2005, , .		0
229	Retinal nerve fiber layer thickness map. , 2006, , .		0
230	Retinal nerve fiber layer thickness map and blood flow pulsation measured with SDOCT. , 2006, , .		0
231	Endoscopic polarization-sensitive optical coherence tomography. , 2006, 6079, 402.		0
232	Hybrid LSLO/SDOCT retinal imager. , 2007, , .		0
233	Spectrally balanced detection for OFDI. , 2008, , .		0
234	High speed 3D endoscopic optical frequency domain imaging probe for lung cancer diagnosis 2013,		0

#	Article	IF	CITATIONS
235	High speed miniature motorized endoscopic probe for 3D optical frequency domain imaging. Proceedings of SPIE, 2013, , .	0.8	0

Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference) Tj ETQq0 0 0 rgBT /Overlock 10

237	A novel 1050nm handheld OCT imaging system for pediatric retinoblastoma patients: technology development and clinical study (Conference Presentation). , 2016, , .		0
238	Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging. Optics Express, 2017, 25, 6475.	3.4	0
239	Burn Depth Determination by High-Speed Fiber-Based Polarization Sensitive Optical Coherence Tomography at 1.3 micrometers. , 2002, , .		0
240	Phase resolved digital signal processing in optical coherence tomography. , 2002, , .		0
241	Polarization Sensitive Optical Coherence Tomography. , 2004, , 803-846.		0
242	Ultra-high resolution video rate in vivo retinal imaging with Spectral Domain Optical Coherence Tomography. , 2004, , .		0
243	Video-Rate Spectral Domain Optical Coherence Tomography enabling 3D Reconstruction of the Retina. , 2004, , .		0
244	Vector-based polarization analysis for optical coherence tomography. , 2004, , .		0
245	Human retinal blood flow imaging with video-rate spectral domain optical Doppler tomography. , 2004, , .		0
246	Non-invasive optical detection of functionally-stimulated neural activity in the limulus compound eye. , 2008, , .		0
247	Advances in Optical Coherence Tomography for Biological Imaging. , 2009, , .		0
248	Abstract 3261: Visualizing treatment response dynamics of an in vitro three-dimensional ovarian cancer model. , 2010, , .		0