
## Tomohiro Yokozeki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7780660/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mechanical properties of corrugated composites for candidate materials of flexible wing structures.<br>Composites Part A: Applied Science and Manufacturing, 2006, 37, 1578-1586.                             | 3.8 | 236       |
| 2  | Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using<br>CSCNT-dispersed epoxy. Composites Part A: Applied Science and Manufacturing, 2007, 38, 2121-2130.                  | 3.8 | 182       |
| 3  | Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates. Composite Structures, 2008, 82, 382-389.                                       | 3.1 | 178       |
| 4  | Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs). Composites Part A: Applied Science and Manufacturing, 2007, 38, 917-924.                         | 3.8 | 152       |
| 5  | Damage characterization in thin-ply composite laminates under out-of-plane transverse loadings.<br>Composite Structures, 2010, 93, 49-57.                                                                     | 3.1 | 120       |
| 6  | Lightning damage suppression in a carbon fiber-reinforced polymer with a polyaniline-based conductive thermoset matrix. Composites Science and Technology, 2016, 127, 1-7.                                    | 3.8 | 102       |
| 7  | Development of Variable Camber Morphing Airfoil Using Corrugated Structure. Journal of Aircraft, 2014, 51, 1023-1029.                                                                                         | 1.7 | 93        |
| 8  | Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes.<br>Composites Science and Technology, 2009, 69, 2268-2273.                                                    | 3.8 | 92        |
| 9  | A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. Composite Structures, 2017, 160, 89-99.                   | 3.1 | 86        |
| 10 | Development and characterization of CFRP using a polyaniline-based conductive thermoset matrix.<br>Composites Science and Technology, 2015, 117, 277-281.                                                     | 3.8 | 70        |
| 11 | Factors affecting direct lightning strike damage to fiber reinforced composites: A review. Composites<br>Part B: Engineering, 2020, 183, 107688.                                                              | 5.9 | 68        |
| 12 | Interleaved MWCNT buckypaper between CFRP laminates to improve through-thickness electrical conductivity and reducing lightning strike damage. Composite Structures, 2019, 210, 581-589.                      | 3.1 | 65        |
| 13 | Nonlinear behavior and compressive strength of unidirectional and multidirectional carbon fiber composite laminates. Composites Part A: Applied Science and Manufacturing, 2006, 37, 2069-2079.               | 3.8 | 63        |
| 14 | Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously<br>improved mechanical properties. Composites Part A: Applied Science and Manufacturing, 2016, 82,<br>100-107. | 3.8 | 63        |
| 15 | Development of variable camber wing with morphing leading and trailing sections using corrugated structures. Journal of Intelligent Material Systems and Structures, 2016, 27, 2827-2836.                     | 1.4 | 60        |
| 16 | Effect of through-thickness electrical conductivity of CFRPs on lightning strike damages. Composites<br>Part A: Applied Science and Manufacturing, 2018, 114, 429-438.                                        | 3.8 | 60        |
| 17 | Effects of layup angle and ply thickness on matrix crack interaction in contiguous plies of composite<br>laminates. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1229-1235.                | 3.8 | 59        |
| 18 | Geometrically nonlinear static aeroelastic analysis of composite morphing wing with corrugated structures. Aerospace Science and Technology, 2019, 88, 244-257.                                               | 2.5 | 59        |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Simple constitutive model for nonlinear response of fiber-reinforced composites with loading-directional dependence. Composites Science and Technology, 2007, 67, 111-118.                                                                               | 3.8 | 52        |
| 20 | Correction method for evaluation of interfacial fracture toughness of DCB, ENF and MMB specimens with residual thermal stresses. Composites Science and Technology, 2008, 68, 760-767.                                                                   | 3.8 | 50        |
| 21 | Enhanced thermomechanical and electrical properties of multiwalled carbon nanotube paper<br>reinforced epoxy laminar composites. Composites Part A: Applied Science and Manufacturing, 2018, 104,<br>129-138.                                            | 3.8 | 50        |
| 22 | Fatigue growth of matrix cracks in the transverse direction of CFRP laminates. Composites Science and Technology, 2002, 62, 1223-1229.                                                                                                                   | 3.8 | 49        |
| 23 | Effects of fiber nonlinear properties on the compressive strength prediction of unidirectional carbon–fiber composites. Composites Science and Technology, 2005, 65, 2140-2147.                                                                          | 3.8 | 46        |
| 24 | Electrical conductivity and interlaminar shear strength enhancement of carbon fiber reinforced<br>polymers through synergetic effect between graphene oxide and polyaniline. Composites Part A:<br>Applied Science and Manufacturing, 2016, 90, 243-249. | 3.8 | 46        |
| 25 | Evaluation of gas leakage through composite laminates with multilayer matrix cracks: Cracking angle effects. Composites Science and Technology, 2006, 66, 2815-2824.                                                                                     | 3.8 | 42        |
| 26 | Polyaniline-based all-polymeric adhesive layer: An effective lightning strike protection technology for high residual mechanical strength of CFRPs. Composites Science and Technology, 2019, 172, 49-57.                                                 | 3.8 | 42        |
| 27 | Overall thermoelastic properties of symmetric laminates containing obliquely crossed matrix cracks.<br>Composites Science and Technology, 2005, 65, 1647-1654.                                                                                           | 3.8 | 39        |
| 28 | Improved environmental stability, electrical and EMI shielding properties of vaporâ€grown carbon<br>fiberâ€filled polyanilineâ€based nanocomposite. Polymer Engineering and Science, 2019, 59, 956-963.                                                  | 1.5 | 39        |
| 29 | The decoupling electrical and thermal conductivity of fullerene/polyaniline hybrids reinforced polymer composites. Composites Science and Technology, 2017, 144, 160-168.                                                                                | 3.8 | 38        |
| 30 | Energy release rates of bi-material interface crack including residual thermal stresses: Application of crack tip element method. Engineering Fracture Mechanics, 2010, 77, 84-93.                                                                       | 2.0 | 37        |
| 31 | Effect of polyurethane dispersion as surface treatment for carbon fabrics on mechanical properties of carbon/Nylon composites. Composites Science and Technology, 2017, 151, 268-281.                                                                    | 3.8 | 36        |
| 32 | Evaluation of adhesively bonded joint strength of CFRP with laser treatment. Advanced Composite<br>Materials, 2016, 25, 317-327.                                                                                                                         | 1.0 | 34        |
| 33 | Effect of hot water on the mechanical performance of unidirectional carbon fiber-reinforced nylon 6 composites. Composites Science and Technology, 2020, 200, 108426.                                                                                    | 3.8 | 32        |
| 34 | Comparison of out-of-plane tensile strengths of aligned CFRP obtained by 3-point bending and direct<br>loading tests. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1828-1836.                                                         | 3.8 | 30        |
| 35 | Irreversible tunability of through-thickness electrical conductivity of polyaniline-based CFRP by de-doping. Composites Science and Technology, 2017, 152, 20-26.                                                                                        | 3.8 | 29        |
| 36 | Conductive layer-based multifunctional structural composites for electromagnetic interference shielding. Composite Structures, 2021, 261, 113293.                                                                                                        | 3.1 | 29        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Consecutive matrix cracking in contiguous plies of composite laminates. International Journal of<br>Solids and Structures, 2005, 42, 2785-2802.                                                                                            | 1.3 | 28        |
| 38 | Experimental Cryogenic Gas Leakage Through Damaged Composite Laminates for Propellant Tank<br>Application. Journal of Spacecraft and Rockets, 2005, 42, 363-366.                                                                           | 1.3 | 27        |
| 39 | Experimental and numerical analysis of CFRP-SPCC hybrid laminates for automotive and structural applications with cost analysis assessment. Composite Structures, 2021, 263, 113707.                                                       | 3.1 | 27        |
| 40 | Effects of geometry and specimen size on out-of-plane tensile strength of aligned CFRP determined by direct tensile method. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1425-1433.                                     | 3.8 | 26        |
| 41 | The enhancement effect of carbon-based nano-fillers/polyaniline hybrids on the through-thickness<br>electric conductivity of carbon fiber reinforced polymer. Composites Part A: Applied Science and<br>Manufacturing, 2018, 105, 281-290. | 3.8 | 26        |
| 42 | Investigation of shear thinning behavior and microstructures of MWCNT/epoxy and CNF/epoxy suspensions under steady shear conditions. European Polymer Journal, 2012, 48, 1042-1049.                                                        | 2.6 | 25        |
| 43 | Design of MWCNT bucky paper reinforced PANI–DBSA–DVB composites with superior electrical and mechanical properties. Journal of Materials Chemistry C, 2018, 6, 12396-12406.                                                                | 2.7 | 25        |
| 44 | Transverse Crack Propagation in the Specimen Width Direction of CFRP Laminates under Static Tensile<br>Loadings. Journal of Composite Materials, 2002, 36, 2085-2099.                                                                      | 1.2 | 24        |
| 45 | Simulation on kink-band formation during axial compression of a unidirectional carbon<br>fiber-reinforced plastic constructed by X-ray computed tomography images. Advanced Composite<br>Materials, 2019, 28, 347-363.                     | 1.0 | 23        |
| 46 | Steel plate cold commercial - carbon fiber reinforced plastics hybrid laminates for automotive applications: curing perspective with thermal residual effect. Journal of Materials Research and Technology, 2021, 14, 2700-2714.           | 2.6 | 23        |
| 47 | Delamination behavior and energy release rate evaluation of CFRP/SPCC hybrid laminates under ENF test: Corrected with residual thermal stresses. Composite Structures, 2020, 236, 111890.                                                  | 3.1 | 22        |
| 48 | Gas permeability of CFRP cross-ply laminates with thin-ply barrier layers under cryogenic and biaxial loading conditions. Composite Structures, 2020, 245, 112326.                                                                         | 3.1 | 21        |
| 49 | Experimental and numerical studies of the open-hole compressive strength of thin-ply CFRP laminates.<br>Composites Part A: Applied Science and Manufacturing, 2021, 145, 106365.                                                           | 3.8 | 21        |
| 50 | Effects of ply thickness and 0°-layer ratio on failure mechanism of open-hole and filled-hole tensile<br>tests of thin-ply composite laminates. Composite Structures, 2022, 280, 114926.                                                   | 3.1 | 21        |
| 51 | Effects of core machining configuration on the debonding toughness of foam core sandwich panels.<br>Advanced Composite Materials, 2016, 25, 45-58.                                                                                         | 1.0 | 20        |
| 52 | Development and Wind Tunnel Test of Variable Camber Morphing Wing. , 2014, , .                                                                                                                                                             |     | 19        |
| 53 | Titanium alloy foil-inserted carbon fiber/epoxy composites for cryogenic propellant tank application.<br>Advanced Composite Materials, 2014, 23, 129-149.                                                                                  | 1.0 | 18        |
| 54 | Higher performance carbon fiber reinforced thermoplastic composites from thermoplastic prepreg<br>technique: Heat and moisture effect. Composites Part B: Engineering, 2018, 154, 90-98.                                                   | 5.9 | 18        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Fabrication of well-isolated graphene and evaluation of thermoelectric performance of polyaniline–graphene composite film. Journal of Materials Science, 2019, 54, 3904-3913.                           | 1.7 | 18        |
| 56 | Numerical analysis on the flexural strength of unidirectional CFRTP composites with in-plane fiber bundle waviness. Advanced Composite Materials, 2020, 29, 89-100.                                     | 1.0 | 18        |
| 57 | Fatigue simulation for progressive damage in CFRP laminates using intra-laminar and inter-laminar fatigue damage models. International Journal of Fatigue, 2021, 143, 106015.                           | 2.8 | 18        |
| 58 | Comparison of out-of-plane tensile moduli of CFRP laminates obtained by 3-point bending and direct loading tests. Composites Part A: Applied Science and Manufacturing, 2014, 67, 77-85.                | 3.8 | 17        |
| 59 | Reduced de-doping and enhanced electrical conductivity of polyaniline filled phenol-divinylbenzene composite for potential lightning strike protection application. Synthetic Metals, 2019, 249, 81-89. | 2.1 | 17        |
| 60 | Analysis of crack kinking in foam core sandwich beams. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1493-1499.                                                                       | 3.8 | 15        |
| 61 | VaRTM process of composites using porous mold. Advanced Composite Materials, 2013, 22, 99-107.                                                                                                          | 1.0 | 15        |
| 62 | Mechanical Behavior of Composite Lattice Cylinders. , 2014, , .                                                                                                                                         |     | 15        |
| 63 | Mechanical behavior in compression of skin-added X-lattice composite panel with corrugated ribs.<br>Composite Structures, 2017, 168, 863-871.                                                           | 3.1 | 15        |
| 64 | Strain sensing behavior of multifunctional polyaniline-based thermoset polymer under static loading conditions. Polymer Testing, 2019, 77, 105916.                                                      | 2.3 | 15        |
| 65 | Comparison of buckling loads of hyperboloidal and cylindrical lattice structures. Composite<br>Structures, 2019, 207, 877-888.                                                                          | 3.1 | 15        |
| 66 | Internal low-velocity impact damage prediction in CFRP laminates using surface profiles and machine learning. Composites Part B: Engineering, 2022, 237, 109844.                                        | 5.9 | 15        |
| 67 | Stress analysis of symmetric laminates with obliquely-crossed matrix cracks. Advanced Composite<br>Materials, 2004, 13, 121-140.                                                                        | 1.0 | 14        |
| 68 | CFRP laminate out-of-plane tensile modulus determined by direct loading. Composites Part A: Applied<br>Science and Manufacturing, 2010, 41, 1538-1544.                                                  | 3.8 | 14        |
| 69 | Fracture Toughness of CFRP Adhesive Bonded Joints at Cryogenic Temperature. Journal of Adhesion<br>Science and Technology, 2012, 26, 1017-1031.                                                         | 1.4 | 14        |
| 70 | Effect of polyurethane dispersion treatment on the performance improvement of carbon woven fabric-reinforced composites. Journal of Thermoplastic Composite Materials, 2018, 31, 408-425.               | 2.6 | 14        |
| 71 | Frequency independent AC electrical conductivity and dielectric properties of polyaniline-based conductive thermosetting composite. Journal of Polymer Engineering, 2018, 38, 955-961.                  | 0.6 | 14        |
| 72 | Polyaniline-based multifunctional glass fiber reinforced conductive composite for strain monitoring.<br>Polymer Testing, 2020, 87, 106547.                                                              | 2.3 | 14        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The effect of matrix cracks on gas permeability through CFRP laminates. Advanced Composite<br>Materials, 2004, 13, 227-236.                                                                                                | 1.0 | 13        |
| 74 | Numerical and experimental evaluation of the formation of leakage paths through CFRP cross-ply laminates with leak barrier layers. Composite Structures, 2019, 230, 111530.                                                | 3.1 | 13        |
| 75 | Scavenging phenomenon and improved electrical and mechanical properties of<br>polyaniline–divinylbenzene composite in presence of MWCNT. International Journal of Mechanics and<br>Materials in Design, 2018, 14, 697-708. | 1.7 | 12        |
| 76 | Cationic scavenging by polyaniline: Boon or bane from synthesis point of view of its nanocomposites.<br>Polymer, 2018, 149, 169-177.                                                                                       | 1.8 | 12        |
| 77 | Investigation of the Flexural Properties and Failure Behavior of Unidirectional CF/Nylon 6 and CF/Epoxy Composites. Open Journal of Composite Materials, 2017, 07, 227-249.                                                | 0.4 | 12        |
| 78 | Effect of on-axis tensile loading on shear properties of an orthogonal 3D woven SiC/SiC composite.<br>Composites Science and Technology, 2005, 65, 2541-2549.                                                              | 3.8 | 11        |
| 79 | In-situ observation of tensile failure mode in cross-ply CFRP laminates using Talbot-Lau interferometry. Composite Structures, 2020, 253, 112758.                                                                          | 3.1 | 11        |
| 80 | Damage-mechanics mesoscale modeling of composite laminates considering diffuse and discrete ply damages: Effects of ply thickness. Composite Structures, 2021, 277, 114609.                                                | 3.1 | 11        |
| 81 | Gas Permeability of Microcracked Laminates Under Cryogenic Conditions. , 2003, , .                                                                                                                                         |     | 10        |
| 82 | Pressurization test on CFRP liner-less tanks at liquefied nitrogen temperature. Advanced Composite<br>Materials, 2004, 13, 81-88.                                                                                          | 1.0 | 10        |
| 83 | Damage monitoring of polymer-lined carbon fibre-reinforced plastic using small-diameter fibre Bragg grating sensors. Journal of Reinforced Plastics and Composites, 2015, 34, 454-462.                                     | 1.6 | 10        |
| 84 | Simulated lightning strike investigation of CFRP comprising a novel polyaniline/phenol based electrically conductive resin matrix. Composites Science and Technology, 2021, 214, 108971.                                   | 3.8 | 10        |
| 85 | Wave propagation analysis of one-dimensional CFRP lattice structure. Composite Structures, 2021, 261, 113306.                                                                                                              | 3.1 | 9         |
| 86 | Unidirectional CFRP kinking under uniaxial compression modeled using synchrotron radiation computed tomography imaging. Composite Structures, 2022, 289, 115458.                                                           | 3.1 | 9         |
| 87 | Linear and nonlinear torsional behavior of unidirectional CFRP and GFRP. Composites Science and Technology, 2007, 67, 3457-3464.                                                                                           | 3.8 | 8         |
| 88 | Evaluation of Compressive Nonlinear Response of Unidirectional Carbon Fiber Reinforced Composites<br>using a Modified Sandwich Beam Specimen in Flexure. Journal of Reinforced Plastics and Composites,<br>2008, 27, 5-17. | 1.6 | 8         |
| 89 | Wind tunnel test of Japanese arrows with the JAXA 60-cm magnetic suspension and balance system.<br>Experiments in Fluids, 2012, 53, 451-466.                                                                               | 1.1 | 8         |
| 90 | Analysis on temperature-dependent deployment behavior of bi-stable composite rods. Advanced<br>Composite Materials, 2019, 28, 245-257.                                                                                     | 1.0 | 8         |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Through-Thickness Connection of Matrix Cracks in Laminate Composites for Propellant Tank. Journal of Spacecraft and Rockets, 2005, 42, 647-653.                                                                     | 1.3 | 7         |
| 92  | Torsion fatigue behavior of unidirectional carbon/epoxy and glass/epoxy composites. Composite Structures, 2009, 90, 482-489.                                                                                        | 3.1 | 7         |
| 93  | Multi-fidelity progressive damage simulation of notched composite laminates with various ply thicknesses. International Journal of Solids and Structures, 2022, 242, 111518.                                        | 1.3 | 7         |
| 94  | Investigation into property control of VaRTM composites by resin infusion process. Advanced Composite Materials, 2015, 24, 495-507.                                                                                 | 1.0 | 6         |
| 95  | Out-of-plane tensile modulus of CFRP laminates by 3-point bending test. Advanced Composite Materials, 2015, 24, 221-237.                                                                                            | 1.0 | 6         |
| 96  | Simultaneous enhancement of electrical conductivity and mechanical properties in<br>buckypaper-reinforced polydivinylbenzene(doped polyaniline) composites. Composites Science and<br>Technology, 2018, 161, 50-56. | 3.8 | 6         |
| 97  | Synthesis and characterization of PANI/Pâ€2M conductive composites: Thermal, rheological, mechanical, and electrical properties. Polymer Composites, 2019, 40, 4321-4328.                                           | 2.3 | 6         |
| 98  | Comparison of semi-doped PANI/DBSA complex achieved by thermal doping and roll-mill process: A new perspective for application. Polymer, 2020, 202, 122723.                                                         | 1.8 | 6         |
| 99  | Simplified Method for Predicting Overall Thermomechanical Properties of Cracked Composite Laminates. Journal of Reinforced Plastics and Composites, 2010, 29, 675-684.                                              | 1.6 | 5         |
| 100 | Simplified Predictive Method of Viscosity of Nanofiber-Dispersed Polymer Suspensions. Advanced Composite Materials, 2011, 20, 537-546.                                                                              | 1.0 | 5         |
| 101 | Semiâ€Empirical Modeling of Cas Permeability Induced by Multilayer Matrix Cracks in Composite<br>Laminates. Multidiscipline Modeling in Materials and Structures, 2007, 3, 383-398.                                 | 0.6 | 4         |
| 102 | Stability of Skin Added Lattice Structure. , 2015, , .                                                                                                                                                              |     | 4         |
| 103 | Introducing a curable dopant with methacrylate functionality for polyaniline based composites.<br>Polymer Testing, 2019, 73, 171-177.                                                                               | 2.3 | 4         |
| 104 | Electrically conductive carbon fiber layers as lightning strike protection for non-conductive epoxy-based CFRP substrate. Journal of Composite Materials, 2020, 54, 4547-4555.                                      | 1.2 | 4         |
| 105 | Multi-fidelity Aeroelastic Simulation of a Morphing Wing Trailing Edge. , 2021, , .                                                                                                                                 |     | 4         |
| 106 | Matrix Crack Accumulation Behavior in Multiple Plies of CFRP Laminates. Journal of the Japan Society<br>for Composite Materials, 2005, 31, 31-37.                                                                   | 0.1 | 4         |
| 107 | Mode II Fracture Toughness of CFRP Adhesive Bonded Structure at Cryogenic Temperature. Journal of the Japan Society for Composite Materials, 2011, 37, 130-137.                                                     | 0.1 | 4         |
| 108 | Characterization of Nonlinear Behaviors of CSCNT/Carbon Fiber-Reinforced Epoxy Laminates.<br>Advanced Composite Materials, 2009, 18, 251-264.                                                                       | 1.0 | 3         |

Tomohiro Yokozeki

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | On the specimen for interfacial fracture toughness evaluation of foam-core sandwich structures.<br>Advanced Composite Materials, 2012, 21, 491-503.                                                                    | 1.0 | 3         |
| 110 | Damage characterization and numerical modeling of titanium matrix composites subjected to low-velocity impact for landing gear application. Advanced Composite Materials, 2015, 24, 343-358.                           | 1.0 | 3         |
| 111 | Optimum Morphing Shape Design for Morphing Wing with Corrugated Structure Using RBF Network. , 2018, , 916-930.                                                                                                        |     | 3         |
| 112 | Shock wave filtering of two-dimensional CFRP X-lattice structures: A numerical investigation.<br>Composite Structures, 2021, 265, 113743.                                                                              | 3.1 | 3         |
| 113 | Research on the Damage Behaviors of CFRP Laminates with Polymer Films for Cryogenic Tank<br>Application. Journal of the Japan Society for Composite Materials, 2008, 34, 3-13.                                         | 0.1 | 3         |
| 114 | Out-of-Plane Tensile Modulus of CFRP Laminates by 3-Point Bending Test. Journal of the Japan Society<br>for Composite Materials, 2013, 39, 184-192.                                                                    | 0.1 | 3         |
| 115 | Experiments on the mode II fracture toughness in ENF tests of CFRP curved beams. Composite Structures, 2022, 292, 115692.                                                                                              | 3.1 | 3         |
| 116 | Electrically conductive carbon fiber reinforced plastics induced by uneven distribution of polyaniline composite micron-sized particles in thermosetting matrix. Composites Science and Technology, 2022, 228, 109642. | 3.8 | 3         |
| 117 | Transverse crack propagation process across the specimen width in toughened CFRP laminates. , 2001, ,                                                                                                                  |     | 2         |
| 118 | Evaluation Method of Adhesive Fracture Toughness Based on Double Cantilever Beam (DCB) Tests<br>Including Residual Thermal Stresses. Advanced Composite Materials, 2008, 17, 301-317.                                  | 1.0 | 2         |
| 119 | Evaluation of Viscosity of CNT-dispersed Polymer under Various Processing Conditions. Journal of the Japan Society for Composite Materials, 2010, 36, 19-24.                                                           | 0.1 | 2         |
| 120 | Aero-Structural Evaluation of Morphing Control Surface Using Corrugated Panels. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2017, 15, a7-a15.                    | 0.1 | 2         |
| 121 | Nonlinear Aeroelasticity of Morphing Wings with Corrugated Structures. , 2019, , .                                                                                                                                     |     | 2         |
| 122 | Structural and Aerodynamic Models for Aeroelastic Analysis of Corrugated Morphing Wings. , 2020, ,                                                                                                                     |     | 2         |
| 123 | Aero-structural Analysis of Corrugated Morphing Wing with Spanwise Camber Change. , 2020, , .                                                                                                                          |     | 2         |
| 124 | Analytical study on the thermal deformation of ultralight phased array antenna. Acta Astronautica, 2021, 188, 531-544.                                                                                                 | 1.7 | 2         |
| 125 | Thickness threshold study of polyaniline-based lightning strike protection coating for carbon/glass fiber reinforced polymer composites. Composite Structures, 2022, 280, 114954.                                      | 3.1 | 2         |
| 126 | Aeroservoelastic Characteristics of a Corrugated Morphing Control Surface. International Journal of Aeronautical and Space Sciences, 0, , .                                                                            | 1.0 | 2         |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Dataset for surface and internal damage after impact on CFRP laminates. Data in Brief, 2022, 43, 108462.                                                                                                                              | 0.5 | 2         |
| 128 | Pressurization of CF/Epoxy Model Tank at LN2 Temperature and Identification of Leak Path Formation in Tank Wall. , 2004, , .                                                                                                          |     | 1         |
| 129 | Some of the Topics in Composites Research Projects in Japan. , 2009, , .                                                                                                                                                              |     | 1         |
| 130 | Simulation on the mechanical performance and fracture behavior of unidirectional carbon fiber-reinforced composites. Journal of Composite Materials, 0, , 002199832110201.                                                            | 1.2 | 1         |
| 131 | Effectiveness of Lightning Damage Protection of CFRP with Polyaniline-Based Conductive Thermoset<br>Matrix. Journal of the Japan Society for Aeronautical and Space Sciences, 2016, 64, 223-228.                                      | 0.0 | 1         |
| 132 | Experimental Investigation of the Compression after Impact Strength of Curved CFRP Laminates.<br>Journal of the Japan Society for Composite Materials, 2018, 44, 83-91.                                                               | 0.1 | 1         |
| 133 | Theory for deformation of laminate with multiple inhomogeneous inclusions. International Journal of Solids and Structures, 2022, 234-235, 111291.                                                                                     | 1.3 | 1         |
| 134 | Analysis of mode II strain energy release rates in end-notched flexure tests of carbon fiber-reinforced plastic curved beams. Composite Structures, 2022, 281, 115038.                                                                | 3.1 | 1         |
| 135 | Evaluation of the In-situ Damage and Strength Properties of Thin-ply CFRP Laminates by Micro-scale<br>Finite Element Analysis. Journal of the Japan Society for Composite Materials, 2020, 46, 212-222.                               | 0.1 | 1         |
| 136 | Structural design of Super Pressure Balloon Habitat on the moon. Acta Astronautica, 2022, 195, 183-203.                                                                                                                               | 1.7 | 1         |
| 137 | Permeation-after-impact Properties of CFRP Laminates for Use on Propellant Tank. Transactions of the<br>Japan Society for Aeronautical and Space Sciences Space Technology Japan, 2009, 7, Pc_19-Pc_23.                               | 0.2 | Ο         |
| 138 | Detection of wrinkles in membrane structures by elastic wave propagation. , 2013, , .                                                                                                                                                 |     | 0         |
| 139 | Analysis of the Effect of a Wrinkle on the Elastic Wave Propagation in Membrane Structures. , 2014, , .                                                                                                                               |     | Ο         |
| 140 | Effect of grid geometry on mechanical behavior of skin added lattice structure under axial compression. , 2017, , .                                                                                                                   |     | 0         |
| 141 | Study of efficient fluid-structure interaction analysis for morphing wing with corrugated structures. Transactions of the JSME (in Japanese), 2019, 85, 19-00083-19-00083.                                                            | 0.1 | Ο         |
| 142 | Effect of heat and moisture on mechanical performance of composite materials used in automotive structures. , 2021, , 377-399.                                                                                                        |     | 0         |
| 143 | Energy Release Rate Associated with Interfacial Crack Growth of Laminates Including Residual<br>Thermal Stresses: Application of Crack Tip Element Method. Journal of the Japan Society for Composite<br>Materials, 2009, 35, 99-105. | 0.1 | 0         |
| 144 | Simplified Predictive Model of Viscosity of Nanoparticle-Dispersed Polymer. Journal of the Japan<br>Society for Composite Materials, 2011, 37, 58-62.                                                                                 | 0.1 | 0         |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Analytical Study on the Fracture Toughness Characterization Tests of Foam Core Sandwich<br>Specimens. Journal of the Japan Society for Aeronautical and Space Sciences, 2011, 59, 16-23. | 0.0 | 0         |
| 146 | On the Specimen for Evaluation of Interfacial Fracture Toughness of Foam-core Sandwich Structures.<br>Journal of the Japan Society for Composite Materials, 2012, 38, 93-100.            | 0.1 | 0         |
| 147 | Lightning Strike Damage of CF/Epoxy Composite Laminates with Conductive Polymer Layers. Lecture<br>Notes in Mechanical Engineering, 2020, , 1022-1030.                                   | 0.3 | Ο         |
| 148 | Transient Response of a Wing with Corrugated Morphing Control Surfaces. , 2022, , .                                                                                                      |     | 0         |