Jyrki Mäkelä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7780439/publications.pdf

Version: 2024-02-01

71061 110317 4,764 119 41 64 citations h-index g-index papers 119 119 119 4318 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Randomized, Sham-Controlled Trial of Repetitive Transcranial Magnetic Stimulation Targeting M1 and S2 in Central Poststroke Pain: A Pilot Trial. Neuromodulation, 2022, 25, 538-548.	0.4	19
2	Deep brain stimulation of subthalamic nucleus modulates cortical auditory processing in advanced Parkinson's Disease. PLoS ONE, 2022, 17, e0264333.	1.1	1
3	Effect of long-term paired associative stimulation on the modulation of cortical sensorimotor oscillations after spinal cord injury. Spinal Cord Series and Cases, 2022, 8, 38.	0.3	2
4	Modulation of sensory cortical activity by deep brain stimulation in advanced Parkinson's disease. European Journal of Neuroscience, 2022, 56, 3979-3990.	1.2	2
5	A novel paired associative stimulation protocol with a highâ€frequency peripheral component: A review on results in spinal cord injury rehabilitation. European Journal of Neuroscience, 2021, 53, 3242-3257.	1.2	14
6	State-dependent TMS effects in the visual cortex after visual adaptation: a combined TMS–EEG study. Clinical Neurophysiology, 2021, , .	0.7	7
7	A New Paired Associative Stimulation Protocol with High-Frequency Peripheral Component and High-Intensity 20 Hz Repetitive Transcranial Magnetic Stimulation—A Pilot Study. International Journal of Environmental Research and Public Health, 2021, 18, 11224.	1.2	1
8	Enabling and promoting walking rehabilitation by paired associative stimulation after incomplete paraplegia: a case report. Spinal Cord Series and Cases, 2020, 6, 72.	0.3	9
9	Neuromagnetic speech discrimination responses are associated with reading-related skills in dyslexic and typical readers. Heliyon, 2020, 6, e04619.	1.4	3
10	Effects of Long-Term Paired Associative Stimulation on Strength of Leg Muscles and Walking in Chronic Tetraplegia: A Proof-of-Concept Pilot Study. Frontiers in Neurology, 2020, $11,397$.	1.1	11
11	The impact of TMS and PNS frequencies on MEP potentiation in PAS with high-frequency peripheral component. PLoS ONE, 2020, 15, e0233999.	1.1	7
12	Auditory Mapping With MEG: An Update on the Current State of Clinical Research and Practice With Considerations for Clinical Practice Guidelines. Journal of Clinical Neurophysiology, 2020, 37, 574-584.	0.9	6
13	Restoration of hand function with long-term paired associative stimulation after chronic incomplete tetraplegia: a case study. Spinal Cord Series and Cases, 2019, 5, 81.	0.3	24
14	Paired associative stimulation improves hand function after non-traumatic spinal cord injury: A case series. Clinical Neurophysiology Practice, 2019, 4, 178-183.	0.6	28
15	The use of electronic coil location control for focal magnetic stimulation at the cervical level. Journal of Neuroscience Methods, 2019, 328, 108444.	1.3	О
16	Localization of Sensorimotor Cortex Using Navigated Transcranial Magnetic Stimulation and Magnetoencephalography. Brain Topography, 2019, 32, 873-881.	0.8	2
17	Increasing the frequency of peripheral component in paired associative stimulation strengthens its efficacy. Scientific Reports, 2019, 9, 3849.	1.6	22
18	Navigated Transcranial Magnetic Stimulation in Planning Epilepsy Surgery. , 2019, , 67-74.		0

#	Article	IF	Citations
19	Developments in Clinical MEG and Its Combination with Navigated TMS., 2019, , 1195-1202.		O
20	Developments in Clinical MEG and Its Combination with Navigated TMS., 2019, , 1-8.		0
21	Language mapping with navigated transcranial magnetic stimulation in pediatric and adult patients undergoing epilepsy surgery: Comparison with extraoperative direct cortical stimulation. Epilepsia Open, 2018, 3, 224-235.	1.3	24
22	Spontaneous sensorimotor cortical activity is suppressed by deep brain stimulation in patients with advanced Parkinson's disease. Neuroscience Letters, 2018, 683, 48-53.	1.0	25
23	Combining rTMS With Intensive Language-Action Therapy in Chronic Aphasia: A Randomized Controlled Trial. Frontiers in Neuroscience, 2018, 12, 1036.	1.4	34
24	Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta Neurochirurgica, 2017, 159, 1187-1195.	0.9	165
25	Long-Term Paired Associative Stimulation Enhances Motor Output of the Tetraplegic Hand. Journal of Neurotrauma, 2017, 34, 2668-2674.	1.7	43
26	Language control mechanisms differ for native languages: Neuromagnetic evidence from trilingual language switching. Neuropsychologia, 2017, 107, 108-120.	0.7	14
27	nTMS Language Mapping: Basic Principles and Clinical Use. , 2017, , 131-150.		1
28	Paired Associative Stimulation with High-Frequency Peripheral Component Leads to Enhancement of Corticospinal Transmission at Wide Range of Interstimulus Intervals. Frontiers in Human Neuroscience, 2016, 10, 470.	1.0	33
29	Acquisition and consolidation of novel morphology in human neocortex: A neuromagnetic study. Cortex, 2016, 83, 1-16.	1.1	17
30	SQUIDs in biomagnetism: a roadmap towards improved healthcare. Superconductor Science and Technology, 2016, 29, 113001.	1.8	67
31	Long-term paired associative stimulation can restore voluntary control over paralyzed muscles in incomplete chronic spinal cord injury patients. Spinal Cord Series and Cases, 2016, 2, 16016.	0.3	36
32	Virtual MEG Helmet: Computer Simulation of an Approach to Neuromagnetic Field Sampling. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 539-548.	3.9	4
33	Neural mechanisms underlying word- and phrase-level morphological parsing. Journal of Neurolinguistics, 2016, 38, 26-41.	0.5	4
34	Transcutaneous Vagus Nerve Stimulation Modulates Tinnitus-Related Beta- and Gamma-Band Activity. Ear and Hearing, 2015, 36, e76-e85.	1.0	37
35	An Internet-Based Real-Time Audiovisual Link for Dual MEG Recordings. PLoS ONE, 2015, 10, e0128485.	1.1	30
36	Cortical Excitability Measured with nTMS and MEG during Stroke Recovery. Neural Plasticity, 2015, 2015, 1-8.	1.0	15

#	Article	lF	CITATIONS
37	Two Distinct Auditory-Motor Circuits for Monitoring Speech Production as Revealed by Content-Specific Suppression of Auditory Cortex. Cerebral Cortex, 2015, 25, 1576-1586.	1.6	34
38	Accelerometer-based automatic voice onset detection in speech mapping with navigated repetitive transcranial magnetic stimulation. Journal of Neuroscience Methods, 2015, 253, 70-77.	1.3	24
39	Context affects L1 but not L2 during bilingual word recognition: An MEG study. Brain and Language, 2015, 142, 8-17.	0.8	14
40	The use of F-response in defining interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired associative stimulation. Journal of Neuroscience Methods, 2015, 242, 112-117.	1.3	39
41	Cortico-muscular coherence parallels coherence of postural tremor and MEG during static muscle contraction. Neuroscience Letters, 2015, 602, 22-26.	1.0	17
42	Cortico-muscular coherence in advanced Parkinson's disease with deep brain stimulation. Clinical Neurophysiology, 2015, 126, 748-755.	0.7	35
43	Integrating nTMS Data into a Radiology Picture Archiving System. Journal of Digital Imaging, 2015, 28, 428-432.	1.6	11
44	A multicenter study of the early detection of synaptic dysfunction in Mild Cognitive Impairment using Magnetoencephalography-derived functional connectivity. NeuroImage: Clinical, 2015, 9, 103-109.	1.4	79
45	Effects of navigated TMS on object and action naming. Frontiers in Human Neuroscience, 2014, 8, 660.	1.0	46
46	Central poststroke pain in young ischemic stroke survivors in the Helsinki Young Stroke Registry. Neurology, 2014, 83, 1147-1154.	1.5	42
47	Future Developments in Clinical MEG and Its Combination with nTMS., 2014,, 933-938.		0
48	Hybrid ultraâ€lowâ€field MRI and magnetoencephalography system based on a commercial wholeâ€head neuromagnetometer. Magnetic Resonance in Medicine, 2013, 69, 1795-1804.	1.9	106
49	Applicability of nTMS in locating the motor cortical representation areas in patients with epilepsy. Acta Neurochirurgica, 2013, 155, 507-518.	0.9	48
50	Navigated transcranial magnetic stimulation for preoperative language mapping in a patient with a left frontoopercular glioblastoma. Journal of Neurosurgery, 2013, 118, 175-179.	0.9	69
51	Functional Plasticity of the Motor Cortical Structures Demonstrated by Navigated TMS in Two Patients with Epilepsy. Brain Stimulation, 2013, 6, 286-291.	0.7	42
52	Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Oto-Laryngologica, 2013, 133, 378-382.	0.3	92
53	Interictal MEG reveals focal cortical dysplasias: Special focus on patients with no visible MRI lesions. Epilepsy Research, 2013, 105, 337-348.	0.8	49
54	Quantifying the contribution of video in combined video-magnetoencephalographic ictal recordings of epilepsy patients. Epilepsy Research, 2013, 105, 405-409.	0.8	9

#	Article	IF	CITATIONS
55	A Comparison of Language Mapping by Preoperative Navigated Transcranial Magnetic Stimulation and Direct Cortical Stimulation During Awake Surgery. Neurosurgery, 2013, 72, 808-819.	0.6	271
56	Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer. Magnetic Resonance in Medicine, 2013, 69, spcone-spcone.	1.9	3
57	Alterations in Spontaneous Brain Oscillations during Stroke Recovery. PLoS ONE, 2013, 8, e61146.	1.1	49
58	Theta brain rhythms index perceptual narrowing in infant speech perception. Frontiers in Psychology, 2013, 4, 690.	1.1	60
59	Probing Modifications of Cortical Excitability During Stroke Recovery With Navigated Transcranial Magnetic Stimulation. Topics in Stroke Rehabilitation, 2012, 19, 182-192.	1.0	10
60	Combination of MEG and MRI in one setup. Biomedizinische Technik, 2012, 57, .	0.9	0
61	MEG dual scanning: a procedure to study real-time auditory interaction between two persons. Frontiers in Human Neuroscience, 2012, 6, 83.	1.0	50
62	Sensitivity and specificity of seizureâ€onset zone estimation by ictal magnetoencephalography. Epilepsia, 2012, 53, 1649-1657.	2.6	54
63	Somatomotor mu rhythm amplitude correlates with rigidity during deep brain stimulation in Parkinsonian patients. Clinical Neurophysiology, 2012, 123, 2010-2017.	0.7	44
64	Effect of afferent input on motor cortex excitability during stroke recovery. Clinical Neurophysiology, 2012, 123, 2429-2436.	0.7	58
65	A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. Journal of Neuroscience Methods, 2012, 204, 349-354.	1.3	128
66	Activation in parietal operculum parallels motor recovery in stroke. Human Brain Mapping, 2012, 33, 534-541.	1.9	19
67	The role of attention in processing morphologically complex spoken words: an EEG/MEG study. Frontiers in Human Neuroscience, 2012, 6, 353.	1.0	11
68	Reorganization of the primary somatosensory cortex during stroke recovery. Clinical Neurophysiology, 2011, 122, 339-345.	0.7	35
69	Magnetoencephalography as a Putative Biomarker for Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-10.	1.1	43
70	Spatiotemporal Dynamics of the Processing of Spoken Inflected and Derived Words: A Combined EEG and MEG Study. Frontiers in Human Neuroscience, 2011, 5, 66.	1.0	28
71	Recovery of brachial plexus lesions resulting from heavy backpack use: A follow-up case series. BMC Musculoskeletal Disorders, 2011, 12, 62.	0.8	17
72	Effects of DBS on auditory and somatosensory processing in Parkinson's disease. Human Brain Mapping, 2011, 32, 1091-1099.	1.9	51

#	Article	IF	CITATIONS
73	Magnetoencephalographic Abnormalities in Creutzfeldt-Jakob Disease: A Case Report. Case Reports in Neurology, 2010, 2, 122-127.	0.3	2
74	Reproducibility of TMS—Evoked EEG responses. Human Brain Mapping, 2009, 30, 1387-1396.	1.9	244
75	Sources of auditory brainstem responses revisited: Contribution by magnetoencephalography. Human Brain Mapping, 2009, 30, 1772-1782.	1.9	124
76	Combined use of non-invasive techniques for improved functional localization for a selected group of epilepsy surgery candidates. NeuroImage, 2009, 45, 342-348.	2.1	59
77	Assessing sleep state in calves through electrophysiological and behavioural recordings: A preliminary study. Applied Animal Behaviour Science, 2008, 111, 235-250.	0.8	41
78	Parallel input makes the brain run faster. Neurolmage, 2008, 40, 1792-1797.	2.1	40
79	MAGNETOENCEPHALOGRAPHY IN NEUROSURGERY. Neurosurgery, 2007, 61, 493-511.	0.6	92
80	Obstructive Sleep Apnea in Loudly Snoring Army Conscripts. Military Medicine, 2007, 172, 879-881.	0.4	4
81	Arnold-Chiari Malformation Type I in Military Conscripts: Symptoms and Effects on Service Fitness. Military Medicine, 2006, 171, 174-176.	0.4	19
82	Chapter 29 Comparison between preoperative and intraoperative localization of cortical function in patients with brain tumors. Supplements To Clinical Neurophysiology, 2006, 59, 213-218.	2.1	0
83	Brachial Plexus Lesions after Backpack Carriage in Young Adults. Clinical Orthopaedics and Related Research, 2006, 452, 205-209.	0.7	49
84	Magnetoencephalography in Neurosurgery. Neurosurgery, 2006, 59, 493-511.	0.6	95
85	Sensorimotor Cortex Localization: Comparison of Magnetoencephalography, Functional MR Imaging, and Intraoperative Cortical Mapping. Radiology, 2006, 241, 213-222.	3.6	120
86	Myotonias and Army Personnel: Symptoms and Effects on Service Fitness. Military Medicine, 2005, 170, 806-809.	0.4	1
87	Dorsal penile nerve stimulation elicits left-hemisphere dominant activation in the second somatosensory cortex. Human Brain Mapping, 2003, 18, 90-99.	1.9	31
88	Human cortical representation of virtual auditory space: differences between sound azimuth and elevation. European Journal of Neuroscience, 2002, 16, 2207-2213.	1.2	55
89	Auditory Pathway Function after Vestibular Schwannoma Surgery. Acta Oto-Laryngologica, 2001, 121, 378-383.	0.3	11
90	Relation Between Frontal 3–7 Hz MEG Activity and the Efficacy of ECT in Major Depression. Journal of ECT, 2001, 17, 136-140.	0.3	49

#	Article	IF	Citations
91	Three-dimensional integration of brain anatomy and function to facilitate intraoperative navigation around the sensorimotor strip. Human Brain Mapping, 2001, 12, 180-192.	1.9	86
92	Thalamic Alterations in Schizophrenia. American Journal of Psychiatry, 2001, 158, 323-a-324.	4.0	0
93	Auditory Cortical Responses in Patients with Bell?s Palsy. Acta Oto-Laryngologica, 2000, 120, 47-50.	0.3	7
94	[18F]FDG-PET and Whole-Scalp MEG Localization of Epileptogenic Cortex. Epilepsia, 1999, 40, 921-930.	2.6	52
95	Hemispheric differences in processing tone frequency and amplitude modulations. NeuroReport, 1999, 10, 3081-3086.	0.6	28
96	Serial processing of the somesthetic information revealed by different effects of stimulus rate on the somatosensory-evoked potentials and magnetic fields. Brain Research, 1998, 791, 200-208.	1.1	36
97	Modification of neuromagnetic cortical signals by thalamic infarctions. Electroencephalography and Clinical Neurophysiology, 1998, 106, 433-443.	0.3	40
98	Modification of auditory pathway functions in patients with hearing improvement after middle ear surgery. Otolaryngology - Head and Neck Surgery, 1998, 119, 125-130.	1.1	15
99	Neuromagnetic sequelae of herpes simplex encephalitis. Electroencephalography and Clinical Neurophysiology, 1998, 106, 251-258.	0.3	6
100	Magnetoencephalographic cortical rhythms. International Journal of Psychophysiology, 1997, 26, 51-62.	0.5	243
101	Auditory cortical responses in humans with profound unilateral sensorineural hearing loss from early childhood. Hearing Research, 1997, 104, 183-190.	0.9	30
102	Human auditory cortex is activated by omissions of auditory stimuli. Brain Research, 1997, 745, 134-143.	1.1	105
103	Distributions and sources of magnetoencephalographic K-complexes. Electroencephalography and Clinical Neurophysiology, 1996, 99, 544-555.	0.3	30
104	Auditory evoked fields to illusory sound source movements. Experimental Brain Research, 1996, 110, 446-54.	0.7	45
105	Trigeminally triggered epileptic hemifacial convulsions. NeuroReport, 1995, 6, 918-920.	0.6	13
106	Effects of Intensity Variation on Human Auditory Evoked Magnetic Fields. Acta Oto-Laryngologica, 1995, 115, 616-621.	0.3	16
107	Abrupt unilateral deafness modifies function of human auditory pathways. NeuroReport, 1995, 6, 961-964.	0.6	61
108	Auditory pathway plasticity in adult humans after unilateral idiopathic sudden sensorineural hearing loss. Hearing Research, 1995, 87, 132-140.	0.9	60

#	Article	IF	CITATIONS
109	Effect of interaural time differences on middle-latency and late auditory evoked magnetic fields. Hearing Research, 1994, 78, 249-257.	0.9	42
110	Human auditory cortical mechanisms of sound lateralisation: III. Monaural and binaural shift responses. Hearing Research, 1994, 81, 91-99.	0.9	49
111	Auditory cortical responses in humans with congenital unilateral conductive hearing loss. Hearing Research, 1994, 78, 91-97.	0.9	33
112	Neuromagnetic cortical signals in a patient with hydrocephalus. NeuroReport, 1994, 5, 1125-1128.	0.6	4
113	Functional differences between auditory cortices of the two hemispheres revealed by whole-head neuromagnetic recordings. Human Brain Mapping, 1993, 1, 48-56.	1.9	107
114	Suppression of magnetic μ rhythm during parkinsonian tremor. Brain Research, 1993, 617, 189-193.	1.1	22
115	Temporal integration and oscillatory responses of the human auditory cortex revealed by evoked magnetic fields to click trains. Hearing Research, 1993, 68, 89-96.	0.9	53
116	Discolouration of skin and serum after sweet ingestion. Lancet, The, 1993, 341, 1476-1477.	6.3	6
117	Auditory evoked magnetic fields in stroke. Physiological Measurement, 1993, 14, A51-A54.	1.2	9
118	Parietal epileptic mirror focus detected with a whole-head neuromagnetometer. NeuroReport, 1993, 5, 45-48.	0.6	44
119	Seizures Associated with Propofol Anesthesia. Epilepsia, 1993, 34, 832-835.	2.6	92