Ashok M Sajjan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7780173/publications.pdf

Version: 2024-02-01

567144 642610 24 748 15 23 citations h-index g-index papers 24 24 24 625 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of injection timing and duration on the performance of diesel engine fueled with port injection of oxygenated fuels. Chemical Engineering Communications, 2023, 210, 1060-1072.	1.5	16
2	Bio-based material from fruit waste of orange peel for industrial applications. Journal of Materials Research and Technology, 2022, 17, 3186-3197.	2.6	38
3	Fabrication and Characterization of Poly(vinyl alcohol)-chitosan-capped Silver Nanoparticle Hybrid Membranes for Pervaporation Dehydration of Ethanol. Gels, 2022, 8, 401.	2.1	3
4	Fabrication and Physicochemical Study of B2SA-Grafted Poly(vinyl Alcohol)–Graphene Hybrid Membranes for Dehydration of Bioethanol by Pervaporation. Membranes, 2021, 11, 110.	1.4	9
5	Studies on Hybrid Bio-Nanocomposites for Structural Applications. Journal of Materials Engineering and Performance, 2021, 30, 6461-6480.	1.2	14
6	Clean combustion and emissions strategy using reactivity controlled compression ignition (RCCI) mode engine powered with CNG-Karanja biodiesel. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124, 116-131.	2.7	102
7	Development and Characterization of Biocompatible Membranes from Natural Chitosan and Gelatin for Pervaporative Separation of Water–Isopropanol Mixture. Polymers, 2021, 13, 2868.	2.0	9
8	Experimental studies on performance and emission characteristics of reactivity controlled compression ignition (RCCI) engine operated with gasoline and Thevetia Peruviana biodiesel. Renewable Energy, 2020, 160, 865-875.	4.3	46
9	Novel fabrication of PSSAMA_Na capped silver nanoparticle embedded sodium alginate membranes for pervaporative dehydration of bioethanol. RSC Advances, 2020, 10, 22645-22655.	1.7	12
10	Preparation and characterization of PVA-Ge/PEG-400 biodegradable plastic blend films for packaging applications. Chemical Data Collections, 2020, 26, 100338.	1.1	42
11	Influence of hydrogen enriched producer gas (HPG) on the combustion characteristics of a CRDI diesel engine operated on dual-fuel mode using renewable and sustainable fuels. Fuel, 2020, 270, 117575.	3.4	29
12	Preparation and characterization of B2SA grafted hybrid poly(vinyl alcohol) membranes for pervaporation separation of water-isopropanol mixtures. Chemical Data Collections, 2019, 22, 100245.	1.1	13
13	Synthesis and characterization of polyelectrolyte complex membranes for the pervaporation separation of water–isopropanol mixtures using sodium alginate and gelatin. Polymer Bulletin, 2018, 75, 851-875.	1.7	17
14	Development and characterization of silicon carbide incorporated graphene amine-based polymer nanocomposites for structural applications. IOP Conference Series: Materials Science and Engineering, 2018, 376, 012073.	0.3	4
15	Preparation of polymer electrolyte hydrogels using poly(vinyl alcohol) and tetraethylorthosilicate for battery applications. IOP Conference Series: Materials Science and Engineering, 2018, 376, 012078.	0.3	O
16	Development of pervaporation membranes using chitosan and titanium glycine-N,N-dimethylphosphonate for dehydration of isopropanol. Journal of Materials Chemistry A, 2015, 3, 3952-3961.	5.2	33
17	Synthesis and characterization of GTMAC grafted chitosan membranes for the dehydration of low water content isopropanol by pervaporation. Journal of Industrial and Engineering Chemistry, 2015, 25, 151-161.	2.9	54
18	Enhancement of pervaporation performance of composite membranes through <i>in situ</i> generation of silver nanoparticles in poly(vinyl alcohol) matrix. Journal of Applied Polymer Science, 2015, 132, .	1.3	25

#	Article	IF	CITATIONS
19	Synthesis and characterization of hybrid membranes using chitosan and 2-(3,4-epoxycyclohexyl) ethyltrimethoxysilane for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2013, 441, 83-92.	4.1	27
20	Solving the trade-off phenomenon in separation of water–dioxan mixtures by pervaporation through crosslinked sodium–alginate membranes with polystyrene sulfonic acid-co-maleic acid. Chemical Engineering Science, 2013, 94, 84-92.	1.9	24
21	Development of novel membranes for PV separation of water–isopropanol mixtures using poly(vinyl) Tj ETQq1	1	4 rgBT /Ove
22	Development of novel grafted hybrid PVA membranes using glycidyltrimethylammonium chloride for pervaporation separation of water–isopropanol mixtures. Journal of Industrial and Engineering Chemistry, 2013, 19, 427-437.	2.9	40
23	Novel approach for the development of pervaporation membranes using sodium alginate and chitosan-wrapped multiwalled carbon nanotubes for the dehydration of isopropanol. Journal of Membrane Science, 2013, 425-426, 77-88.	4.1	80
24	Synthesis and characterization of sulfonated-poly(vinyl alcohol) membranes for the pervaporation dehydration of isopropanol. Journal of Membrane Science, 2011, 383, 224-234.	4.1	87