Banani Kundu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7780082/publications.pdf

Version: 2024-02-01

43 papers 3,433 citations

279701 23 h-index 38 g-index

43 all docs 43 docs citations

43 times ranked

4777 citing authors

#	Article	IF	CITATIONS
1	Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 2013, 65, 457-470.	6.6	1,056
2	Silk proteins for biomedical applications: Bioengineering perspectives. Progress in Polymer Science, 2014, 39, 251-267.	11.8	364
3	Silk scaffolds in bone tissue engineering: An overview. Acta Biomaterialia, 2017, 63, 1-17.	4.1	236
4	Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials, 2012, 33, 2673-2680.	5.7	210
5	A Natural Silk Fibroin Proteinâ€Based Transparent Bioâ€Memristor. Advanced Functional Materials, 2012, 22, 4493-4499.	7.8	202
6	Nonmulberry silk biopolymers. Biopolymers, 2012, 97, 455-467.	1.2	174
7	Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials, 2012, 33, 7456-7467.	5.7	159
8	Emerging tumor spheroids technologies for 3D in vitro cancer modeling., 2018, 184, 201-211.		133
9	Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Acta Biomaterialia, 2018, 69, 218-233.	4.1	91
10	Isolation and processing of silk proteins for biomedical applications. International Journal of Biological Macromolecules, 2014, 70, 70-77.	3.6	75
11	Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2015, 134, 339-345.	2.5	64
12	Osteochondral Tissue Engineering In Vivo: A Comparative Study Using Layered Silk Fibroin Scaffolds from Mulberry and Nonmulberry Silkworms. PLoS ONE, 2013, 8, e80004.	1.1	59
13	Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14548-14559.	4.0	51
14	A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells. Biomaterials, 2013, 34, 9462-9474.	5.7	47
15	Nonmulberry Silk Fibroin Scaffold Shows Superior Osteoconductivity Than Mulberry Silk Fibroin in Calvarial Bone Regeneration. Advanced Healthcare Materials, 2015, 4, 1709-1721.	3.9	46
16	Potential of inherent RGD containing silk fibroin–poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering. Cell and Tissue Research, 2016, 363, 525-540.	1.5	44
17	Osteogenesis of human stem cells in silk biomaterial for regenerative therapy. Progress in Polymer Science, 2010, 35, 1116-1127.	11.8	41
18	Nanofibrous nonmulberry silk/ <scp>PVA</scp> scaffold for osteoinduction and osseointegration. Biopolymers, 2015, 103, 271-284.	1.2	40

#	Article	lF	CITATIONS
19	Bio-inspired fabrication of fibroin cryogels from the muga silkworm <i>Antheraea assamensis</i> for liver tissue engineering. Biomedical Materials (Bristol), 2013, 8, 055003.	1.7	39
20	Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3264-3276.	1.1	37
21	Ion-induced fabrication of silk fibroin nanoparticles from Chinese oak tasar Antheraea pernyi. International Journal of Biological Macromolecules, 2015, 79, 316-325.	3.6	33
22	Anti-bacterial zinc-doped calcium silicate cements: Bone filler. Ceramics International, 2018, 44, 13031-13038.	2.3	31
23	Chinese Oak Tasar Silkworm <i>Antheraea pernyi</i> Silk Proteins: Current Strategies and Future Perspectives for Biomedical Applications. Macromolecular Bioscience, 2019, 19, e1800252.	2.1	31
24	Curcumin ameliorates the targeted delivery of methotrexate intercalated montmorillonite clay to cancer cells. European Journal of Pharmaceutical Sciences, 2019, 135, 91-102.	1.9	26
25	Silk fibroin promotes mineralization of gellan gum hydrogels. International Journal of Biological Macromolecules, 2020, 153, 1328-1334.	3.6	24
26	Copper(II) complexes of piperazine based ligand: Synthesis, crystal structure, protein binding and evaluation of anti-cancerous therapeutic potential. Inorganica Chimica Acta, 2014, 418, 30-41.	1.2	19
27	Biomimetic Designing of Functional Silk Nanotopography Using Self-assembly. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 28458-28467.	4.0	16
28	Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion. Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2017, 21, 125-137.	0.9	16
29	Thromboelastometric and platelet responses to silk biomaterials. Scientific Reports, 2014, 4, 4945.	1.6	14
30	Tumor-Stroma Interactions Alter the Sensitivity of Drug in Breast Cancer. Frontiers in Materials, 2020, 7, .	1.2	11
31	In Vitro Cancer Models: A Closer Look at Limitations on Translation. Bioengineering, 2022, 9, 166.	1.6	11
32	UNILATERAL VARIATION OF PLANTARIS MUSCLE – A CASE REPORT. Journal of Evolution of Medical and Dental Sciences, 2014, 03, 618-622.	0.1	8
33	Super-magnetic smart hybrid doxorubicin loaded nanoparticles effectively target breast adenocarcinoma cells. Microporous and Mesoporous Materials, 2017, 243, 206-213.	2.2	7
34	Biomimetic Antibacterial Pro-Osteogenic Cu-Sericin MOFs for Osteomyelitis Treatment. Biomimetics, 2022, 7, 64.	1.5	5
35	Template mediated protein self-assembly as a valuable tool in regenerative therapy. Biomedical Materials (Bristol), 2018, 13, 044101.	1.7	4
36	adipoSIGHT in Therapeutic Response: Consequences in Osteosarcoma Treatment. Bioengineering, 2021, 8, 83.	1.6	3

#	Article	IF	CITATIONS
37	Cytotoxicity and sustained release of modified divinylsulfone from silk based 3D construct. Journal of Materials Science: Materials in Medicine, 2015, 26, 263.	1.7	2
38	Forecast cancer: the importance of biomimetic 3D in vitro models in cancer drug testing/discovery and therapy. In Vitro Models, 2022, 1, 119-123.	1.0	2
39	Metastasis in three-dimensional biomaterials. , 2020, , 191-216.		1
40	The Tumor Microenvironment: An Introduction to the Development of Microfluidic Devices. Advances in Experimental Medicine and Biology, 2022, , 115-138.	0.8	1
41	INCIDENCE OF SUTURAL BONES WITH SPECIAL REFERENCE TO SEX - A STUDY IN THE EASTERN REGION OF INDIA. Journal of Evolution of Medical and Dental Sciences, 2013, 2, 8729-8735.	0.1	0
42	INCIDENCE & CAUSES OF NEONATAL HYPOGLYCEMIA AFTER CESAREAN SECTION IN A RURAL SETUP OF WEST BENGAL. Journal of Evolution of Medical and Dental Sciences, 2014, 3, 1191-1194.	0.1	0
43	Polysaccharides in Cancer Therapy. , 2022, , 723-743.		0