
TamÃ;s Vigh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7780021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probiotic bacteria stabilized in orally dissolving nanofibers prepared by high-speed electrospinning. Food and Bioproducts Processing, 2021, 128, 84-94.	3.6	23
2	Continuous downstream processing of milled electrospun fibers to tablets monitored by near-infrared and Raman spectroscopy. European Journal of Pharmaceutical Sciences, 2021, 164, 105907.	4.0	7
3	Continuous twin screw granulation: Impact of microcrystalline cellulose batch-to-batch variability during granulation and drying – A QbD approach. International Journal of Pharmaceutics: X, 2021, 3, 100077.	1.6	6
4	Continuous drying of a protein-type drug using scaled-up fiber formation with HP-β-CD matrix resulting in a directly compressible powder for tableting. European Journal of Pharmaceutical Sciences, 2020, 141, 105089.	4.0	21
5	Continuous twin screw granulation: Influence of process and formulation variables on granule quality attributes of model formulations. International Journal of Pharmaceutics, 2020, 576, 118981.	5.2	36
6	Scaleâ€up of electrospinning technology: Applications in the pharmaceutical industry. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1611.	6.1	120
7	Monoclonal antibody formulation manufactured by high-speed electrospinning. International Journal of Pharmaceutics, 2020, 591, 120042.	5.2	10
8	Continuous twin screw granulation: Robustness of lactose/MCC-based formulations. International Journal of Pharmaceutics, 2020, 588, 119756.	5.2	12
9	Continuous twin screw granulation: A complex interplay between formulation properties, process settings and screw design. International Journal of Pharmaceutics, 2020, 576, 119004.	5.2	44
10	Continuous twin screw granulation: Impact of binder addition method and surfactants on granulation of a high-dosed, poorly soluble API. International Journal of Pharmaceutics, 2020, 577, 119068.	5.2	14
11	Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. Journal of Controlled Release, 2019, 296, 162-178.	9.9	74
12	Continuous alternative to freeze drying: Manufacturing of cyclodextrin-based reconstitution powder from aqueous solution using scaled-up electrospinning. Journal of Controlled Release, 2019, 298, 120-127.	9.9	47
13	Using a material property library to find surrogate materials for pharmaceutical process development. Powder Technology, 2018, 339, 659-676.	4.2	47
14	Oral bioavailability enhancement of flubendazole by developing nanofibrous solid dosage forms. Drug Development and Industrial Pharmacy, 2017, 43, 1126-1133.	2.0	22
15	Lubricant-Induced Crystallization of Itraconazole From Tablets Made of Electrospun Amorphous Solid Dispersion. Journal of Pharmaceutical Sciences, 2016, 105, 2982-2988.	3.3	31
16	Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases. Bioprocess and Biosystems Engineering, 2016, 39, 449-459.	3.4	38
17	Stable formulation of proteinâ€ŧype drug in electrospun polymeric fiber followed by tableting and scalingâ€up experiments. Polymers for Advanced Technologies, 2015, 26, 1461-1467.	3.2	20
18	Film Coating as a New Approach to Prepare Tablets Containing Long-Term Stable Lactobacillus acidophilus. Periodica Polytechnica: Chemical Engineering, 2015, 59, 96-103.	1.1	5

TamÃis Vigh

#	Article	IF	CITATIONS
19	Preparation and comparison of spray dried and electrospun bioresorbable drug delivery systems. European Polymer Journal, 2015, 68, 671-679.	5.4	32
20	High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. International Journal of Pharmaceutics, 2015, 480, 137-142.	5.2	155
21	Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions. International Journal of Pharmaceutics, 2015, 494, 23-30.	5.2	44
22	In vitro dissolution–permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFlux™. International Journal of Pharmaceutics, 2015, 491, 180-189.	5.2	58
23	Effect of supercritical CO ₂ plasticization on the degradation and residual crystallinity of melt-extruded spironolactone. Polymers for Advanced Technologies, 2014, 25, 1135-1144.	3.2	7
24	Controlled Formation of Freeâ€Flowing Carvedilol Particles in the Presence of Polyvinylpyrrolidone. Chemical Engineering and Technology, 2014, 37, 249-256.	1.5	2
25	Synthesis of an Aza Chiral Crown Ether Grafted to Nanofibrous Silica Support and Application in Asymmetric Michael Addition. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 713-721.	3.7	12
26	Plasticized Drug‣oaded Melt Electrospun Polymer Mats: Characterization, Thermal Degradation, and Release Kinetics. Journal of Pharmaceutical Sciences, 2014, 103, 1278-1287.	3.3	60
27	Predicting final product properties of melt extruded solid dispersions from process parameters using Raman spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2014, 98, 166-177.	2.8	25
28	Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement. European Journal of Pharmaceutical Sciences, 2013, 49, 595-602.	4.0	66
29	Asymmetric C–C bond formation via Darzens condensation and Michael addition using monosaccharide-based chiral crown ethers. Tetrahedron Letters, 2011, 52, 1473-1476.	1.4	43