Tamás Vigh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7780021/publications.pdf

Version: 2024-02-01

394421 477307 1,081 29 19 29 citations g-index h-index papers 30 30 30 1255 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. International Journal of Pharmaceutics, 2015, 480, 137-142.	5.2	155
2	Scaleâ€up of electrospinning technology: Applications in the pharmaceutical industry. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1611.	6.1	120
3	Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. Journal of Controlled Release, 2019, 296, 162-178.	9.9	74
4	Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement. European Journal of Pharmaceutical Sciences, 2013, 49, 595-602.	4.0	66
5	Plasticized Drugâ€Loaded Melt Electrospun Polymer Mats: Characterization, Thermal Degradation, and Release Kinetics. Journal of Pharmaceutical Sciences, 2014, 103, 1278-1287.	3.3	60
6	In vitro dissolution–permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFlux™. International Journal of Pharmaceutics, 2015, 491, 180-189.	5. 2	58
7	Using a material property library to find surrogate materials for pharmaceutical process development. Powder Technology, 2018, 339, 659-676.	4.2	47
8	Continuous alternative to freeze drying: Manufacturing of cyclodextrin-based reconstitution powder from aqueous solution using scaled-up electrospinning. Journal of Controlled Release, 2019, 298, 120-127.	9.9	47
9	Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions. International Journal of Pharmaceutics, 2015, 494, 23-30.	5. 2	44
10	Continuous twin screw granulation: A complex interplay between formulation properties, process settings and screw design. International Journal of Pharmaceutics, 2020, 576, 119004.	5.2	44
11	Asymmetric C–C bond formation via Darzens condensation and Michael addition using monosaccharide-based chiral crown ethers. Tetrahedron Letters, 2011, 52, 1473-1476.	1.4	43
12	Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases. Bioprocess and Biosystems Engineering, 2016, 39, 449-459.	3.4	38
13	Continuous twin screw granulation: Influence of process and formulation variables on granule quality attributes of model formulations. International Journal of Pharmaceutics, 2020, 576, 118981.	5.2	36
14	Preparation and comparison of spray dried and electrospun bioresorbable drug delivery systems. European Polymer Journal, 2015, 68, 671-679.	5.4	32
15	Lubricant-Induced Crystallization of Itraconazole From Tablets Made of Electrospun Amorphous Solid Dispersion. Journal of Pharmaceutical Sciences, 2016, 105, 2982-2988.	3.3	31
16	Predicting final product properties of melt extruded solid dispersions from process parameters using Raman spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2014, 98, 166-177.	2.8	25
17	Probiotic bacteria stabilized in orally dissolving nanofibers prepared by high-speed electrospinning. Food and Bioproducts Processing, 2021, 128, 84-94.	3.6	23
18	Oral bioavailability enhancement of flubendazole by developing nanofibrous solid dosage forms. Drug Development and Industrial Pharmacy, 2017, 43, 1126-1133.	2.0	22

#	Article	IF	CITATIONS
19	Continuous drying of a protein-type drug using scaled-up fiber formation with HP- \hat{l}^2 -CD matrix resulting in a directly compressible powder for tableting. European Journal of Pharmaceutical Sciences, 2020, 141, 105089.	4.0	21
20	Stable formulation of proteinâ€type drug in electrospun polymeric fiber followed by tableting and scalingâ€up experiments. Polymers for Advanced Technologies, 2015, 26, 1461-1467.	3.2	20
21	Continuous twin screw granulation: Impact of binder addition method and surfactants on granulation of a high-dosed, poorly soluble API. International Journal of Pharmaceutics, 2020, 577, 119068.	5. 2	14
22	Synthesis of an Aza Chiral Crown Ether Grafted to Nanofibrous Silica Support and Application in Asymmetric Michael Addition. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 713-721.	3.7	12
23	Continuous twin screw granulation: Robustness of lactose/MCC-based formulations. International Journal of Pharmaceutics, 2020, 588, 119756.	5.2	12
24	Monoclonal antibody formulation manufactured by high-speed electrospinning. International Journal of Pharmaceutics, 2020, 591, 120042.	5.2	10
25	Effect of supercritical CO ₂ plasticization on the degradation and residual crystallinity of melt-extruded spironolactone. Polymers for Advanced Technologies, 2014, 25, 1135-1144.	3.2	7
26	Continuous downstream processing of milled electrospun fibers to tablets monitored by near-infrared and Raman spectroscopy. European Journal of Pharmaceutical Sciences, 2021, 164, 105907.	4.0	7
27	Continuous twin screw granulation: Impact of microcrystalline cellulose batch-to-batch variability during granulation and drying – A QbD approach. International Journal of Pharmaceutics: X, 2021, 3, 100077.	1.6	6
28	Film Coating as a New Approach to Prepare Tablets Containing Long-Term Stable Lactobacillus acidophilus. Periodica Polytechnica: Chemical Engineering, 2015, 59, 96-103.	1.1	5
29	Controlled Formation of Freeâ€Flowing Carvedilol Particles in the Presence of Polyvinylpyrrolidone. Chemical Engineering and Technology, 2014, 37, 249-256.	1.5	2