Susanne Crewell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7780019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere. Atmospheric Research, 2005, 75, 183-200.	1.8	343
2	RESEARCH CAMPAIGN: The Convective and Orographically Induced Precipitation Study. Bulletin of the American Meteorological Society, 2008, 89, 1477-1486.	1.7	194
3	Towards a highâ€resolution regional reanalysis for the European CORDEX domain. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1-15.	1.0	184
4	The Convective and Orographicallyâ€induced Precipitation Study (COPS): the scientific strategy, the field phase, and research highlights. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 3-30.	1.0	181
5	Largeâ€eddy simulations over Germany using ICON: a comprehensive evaluation. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 69-100.	1.0	175
6	The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification. Bulletin of the American Meteorological Society, 2019, 100, 841-871.	1.7	145
7	EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation. Surveys in Geophysics, 2017, 38, 1529-1568.	2.1	132
8	Accuracy of cloud liquid water path from ground-based microwave radiometry 1. Dependency on cloud model statistics. Radio Science, 2003, 38, n/a-n/a.	0.8	125
9	Overview of the MOSAiC expedition: Atmosphere. Elementa, 2022, 10, .	1.1	121
10	Accuracy of cloud liquid water path from ground-based microwave radiometry 2. Sensor accuracy and synergy. Radio Science, 2003, 38, n/a-n/a.	0.8	117
11	Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part I: Simulated Retrieval Performance in Clear-Sky Conditions. Journal of Applied Meteorology and Climatology, 2009, 48, 1017-1032.	0.6	114
12	Assessment of small-scale integrated water vapour variability during HOPE. Atmospheric Chemistry and Physics, 2015, 15, 2675-2692.	1.9	112
13	Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment. Atmospheric Measurement Techniques, 2014, 7, 3685-3704.	1.2	108
14	The North Atlantic Waveguide and Downstream Impact Experiment. Bulletin of the American Meteorological Society, 2018, 99, 1607-1637.	1.7	105
15	The Added Value of Large-eddy and Storm-resolving Models for Simulating Clouds and Precipitation. Journal of the Meteorological Society of Japan, 2020, 98, 395-435.	0.7	93
16	EUREC ⁴ A. Earth System Science Data, 2021, 13, 4067-4119.	3.7	88
17	JOYCE: Jülich Observatory for Cloud Evolution. Bulletin of the American Meteorological Society, 2015, 96, 1157-1174.	1.7	87
18	Mechanisms initiating deep convection over complex terrain during COPS. Meteorologische Zeitschrift, 2008, 17, 931-948.	0.5	86

#	Article	IF	CITATIONS
19	An Integrated Approach toward Retrieving Physically Consistent Profiles of Temperature, Humidity, and Cloud Liquid Water. Journal of Applied Meteorology and Climatology, 2004, 43, 1295-1307.	1.7	81
20	Monitoring and Modeling the Terrestrial System from Pores to Catchments: The Transregional Collaborative Research Center on Patterns in the Soil–Vegetation–Atmosphere System. Bulletin of the American Meteorological Society, 2015, 96, 1765-1787.	1.7	80
21	Accuracy of Boundary Layer Temperature Profiles Retrieved With Multifrequency Multiangle Microwave Radiometry. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 2195-2201.	2.7	79
22	The impact of convergence zones on the initiation of deep convection: A case study from COPS. Atmospheric Research, 2009, 93, 680-694.	1.8	77
23	Modifications to the Water Vapor Continuum in the Microwave Suggested by Ground-Based 150-GHz Observations. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 3326-3337.	2.7	76
24	Understanding Causes and Effects of Rapid Warming in the Arctic. Eos, 2017, , .	0.1	76
25	How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions?. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,604.	1.2	71
26	Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. Cryosphere, 2015, 9, 285-304.	1.5	67
27	The HD(CP) ² Observational Prototype Experiment (HOPE) – an overview. Atmospheric Chemistry and Physics, 2017, 17, 4887-4914.	1.9	67
28	A novel convective-scale regional reanalysis COSMO-REA2: Improving the representation of precipitation. Meteorologische Zeitschrift, 2017, 26, 345-361.	0.5	60
29	Bias correction of a novel European reanalysis data set for solar energy applications. Solar Energy, 2018, 164, 12-24.	2.9	60
30	Investigation of ground-based microwave radiometer calibration techniques at 530 hPa. Atmospheric Measurement Techniques, 2013, 6, 2641-2658.	1.2	53
31	Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8. Atmospheric Measurement Techniques, 2012, 5, 1529-1549.	1.2	51
32	Profiling Cloud Liquid Water by Combining Active and Passive Microwave Measurements with Cloud Model Statistics. Journal of Atmospheric and Oceanic Technology, 2001, 18, 1354-1366.	0.5	50
33	Surrogate cloud fields generated with the iterative amplitude adapted Fourier transform algorithm. Tellus, Series A: Dynamic Meteorology and Oceanography, 2006, 58, 104-120.	0.8	50
34	HAMP – the microwave package on the High Altitude and LOng range research aircraft (HALO). Atmospheric Measurement Techniques, 2014, 7, 4539-4553.	1.2	50
35	Snow scattering signals in groundâ€based passive microwave radiometer measurements. Journal of Geophysical Research, 2010, 115, .	3.3	48
36	Large-Eddy Atmosphere–Land-Surface Modelling over Heterogeneous Surfaces: Model Development and Comparison with Measurements. Boundary-Layer Meteorology, 2013, 148, 333-356.	1.2	47

#	Article	IF	CITATIONS
37	A High-Altitude Long-Range Aircraft Configured as a Cloud Observatory: The NARVAL Expeditions. Bulletin of the American Meteorological Society, 2019, 100, 1061-1077.	1.7	47
38	Microwave Radiometer for Cloud Carthography: A 22-channel ground-based microwave radiometer for atmospheric research. Radio Science, 2001, 36, 621-638.	0.8	46
39	Trends of Vertically Integrated Water Vapor over the Arctic during 1979–2016: Consistent Moistening All Over?. Journal of Climate, 2019, 32, 6097-6116.	1.2	45
40	Combining Sun-Induced Chlorophyll Fluorescence and Photochemical Reflectance Index Improves Diurnal Modeling of Gross Primary Productivity. Remote Sensing, 2016, 8, 574.	1.8	44
41	Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for Midlatitudes. Journals of the Atmospheric Sciences, 2007, 64, 1550-1568.	0.6	42
42	Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017. Atmospheric Chemistry and Physics, 2018, 18, 17995-18022.	1.9	41
43	A Multisensor Approach Toward a Better Understanding of Snowfall Microphysics: The TOSCA Project. Bulletin of the American Meteorological Society, 2011, 92, 613-628.	1.7	40
44	THE BALTEX BRIDGE CAMPAIGN: An Integrated Approach for a Better Understanding of Clouds. Bulletin of the American Meteorological Society, 2004, 85, 1565-1584.	1.7	39
45	ASUR-an airborne SIS receiver for atmospheric measurements of trace gases at 625 to 760 GHz. IEEE Transactions on Microwave Theory and Techniques, 1995, 43, 2543-2548.	2.9	38
46	A Midlatitude Precipitating Cloud Database Validated with Satellite Observations. Journal of Applied Meteorology and Climatology, 2008, 47, 1337-1353.	0.6	38
47	Can liquid water profiles be retrieved from passive microwave zenith observations?. Geophysical Research Letters, 2009, 36, .	1.5	37
48	Diurnal cycle of the intertropical discontinuity over West Africa analysed by remote sensing and mesoscale modelling. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 92-106.	1.0	37
49	Combining groundâ€based with satelliteâ€based measurements in the atmospheric state retrieval: Assessment of the information content. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6940-6956.	1.2	37
50	Comparison of model predicted liquid water path with ground-based measurements during CLIWA-NET. Atmospheric Research, 2005, 75, 201-226.	1.8	36
51	Advances in Continuously Profiling the Thermodynamic State of the Boundary Layer: Integration of Measurements and Methods. Journal of Atmospheric and Oceanic Technology, 2008, 25, 1251-1266.	0.5	36
52	PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geoscientific Model Development, 2020, 13, 4229-4251.	1.3	35
53	Impact of atmospheric aerosols on photovoltaic energy production Scenario for the Sahel zone. Energy Procedia, 2017, 125, 170-179.	1.8	33
54	The added value of high resolution regional reanalyses for wind power applications. Renewable Energy, 2020, 148, 1094-1109.	4.3	33

#	Article	IF	CITATIONS
55	Assessing model predicted vertical cloud structure and cloud overlap with radar and lidar ceilometer observations for the Baltex Bridge Campaign of CLIWA-NET. Atmospheric Research, 2005, 75, 227-255.	1.8	32
56	Discrimination of cloud and rain liquid water path by groundbased polarized microwave radiometry. Geophysical Research Letters, 2001, 28, 267-270.	1.5	31
57	On characterizing the error in a remotely sensed liquid water content profile. Atmospheric Research, 2010, 98, 57-68.	1.8	31
58	Snow particle orientation observed by groundâ€based microwave radiometry. Journal of Geophysical Research, 2012, 117, .	3.3	30
59	Microwave hyperspectral measurements for temperature and humidity atmospheric profiling from satellite: The clearâ€sky case. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,334.	1.2	30
60	The general observation period 2007 within the priority program on quantitative precipitation forecasting: Concept and first results. Meteorologische Zeitschrift, 2008, 17, 849-866.	0.5	29
61	Long-term evaluation of COSMO forecasting using combined observational data of the GOP period. Meteorologische Zeitschrift, 2011, 20, 119-132.	0.5	28
62	Millimeter wave spectroscopic measurements over the South Pole: 3. The behavior of stratospheric nitric acid through polar fall, winter, and spring. Journal of Geophysical Research, 1997, 102, 1399-1410.	3.3	26
63	Assimilation of radar data in mesoscale models: Physical initialization and latent heat nudging. Physics and Chemistry of the Earth, 2000, 25, 1237-1242.	0.3	24
64	Groundâ€based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions. Geophysical Research Letters, 2012, 39, .	1.5	24
65	EUREC ⁴ A's <i>HALO</i> . Earth System Science Data, 2021, 13, 5545-5563.	3.7	24
66	Simulation of radar reflectivities using a mesoscale weather forecast model. Water Resources Research, 2000, 36, 2221-2231.	1.7	23
67	Path length distributions for solar photons under cloudy skies: Comparison of measured first and second moments with predictions from classical and anomalous diffusion theories. Journal of Geophysical Research, 2006, 111, .	3.3	23
68	Towards more realistic hypotheses for the information content analysis of cloudy/precipitating situations – Application to a hyperspectral instrument in the microwave. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 1-14.	1.0	23
69	Millimeter wave spectroscopic measurements over the South Pole: 1. A study of stratospheric dynamics using N2O observations. Journal of Geophysical Research, 1995, 100, 20839.	3.3	22
70	Interpretation of Polarization Features in Ground-Based Microwave Observations as Caused by Horizontally Aligned Oblate Raindrops. Journal of Applied Meteorology and Climatology, 2001, 40, 1918-1932.	1.7	22
71	Calibrating groundâ€based microwave radiometers: Uncertainty and drifts. Radio Science, 2016, 51, 311-327.	0.8	22
72	Boundary layer observations in West Africa using a novel microwave radiometer. Meteorologische Zeitschrift, 2007, 16, 513-523.	0.5	21

#	Article	IF	CITATIONS
73	Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries. Renewable Energy, 2021, 163, 674-684.	4.3	21
74	Aircraft measurements of CLO and HCL during EASOE 1991/92. Geophysical Research Letters, 1994, 21, 1267-1270.	1.5	20
75	Comparison of ClO measurements by airborne and spaceborne microwave radiometers in the Arctic winter stratosphere 1993. Geophysical Research Letters, 1995, 22, 1489-1492.	1.5	20
76	Remote sensing of ClO and HCl over northern Scandinavia in winter 1992 with an airborne submillimeter radiometer. Journal of Geophysical Research, 1995, 100, 20957.	3.3	20
77	Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling. Atmospheric Measurement Techniques, 2016, 9, 4013-4028.	1.2	20
78	Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model. Atmospheric Chemistry and Physics, 2020, 20, 5657-5678.	1.9	20
79	Long-Term Observations and High-Resolution Modeling of Midlatitude Nocturnal Boundary Layer Processes Connected to Low-Level Jets. Journal of Applied Meteorology and Climatology, 2018, 57, 1155-1170.	0.6	19
80	Investigating the liquid water path over the tropical Atlantic with synergistic airborne measurements. Atmospheric Measurement Techniques, 2019, 12, 3237-3254.	1.2	19
81	Water vapor variability in the Atacama Desert during the 20th century. Global and Planetary Change, 2020, 190, 103192.	1.6	19
82	Polarization signatures and brightness temperatures caused by horizontally oriented snow particles at microwave bands: Effects of atmospheric absorption. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6145-6160.	1.2	18
83	Cloud base height retrieval from multi-angle satellite data. Atmospheric Measurement Techniques, 2019, 12, 1841-1860.	1.2	18
84	The impact of climate change on astronomical observations. Nature Astronomy, 2020, 4, 826-829.	4.2	18
85	A unified data set of airborne cloud remote sensing using the HALO Microwave Package (HAMP). Earth System Science Data, 2019, 11, 921-934.	3.7	18
86	Cloud statistics and cloud radiative effect for a lowâ€mountain site. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 306-324.	1.0	17
87	Biases caused by the instrument bandwidth and beam width on simulated brightness temperature measurements from scanning microwave radiometers. Atmospheric Measurement Techniques, 2013, 6, 1171-1187.	1.2	17
88	Microwave Radar/radiometer for Arctic Clouds (MiRAC): first insights from the ACLOUD campaign. Atmospheric Measurement Techniques, 2019, 12, 5019-5037.	1.2	17
89	Adaptive Estimation of the Stable Boundary Layer Height Using Combined Lidar and Microwave Radiometer Observations. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 6895-6906.	2.7	16
90	Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event. Atmospheric Chemistry and Physics, 2020, 20, 5487-5511.	1.9	16

#	Article	IF	CITATIONS
91	Latent Heat Flux over the North Atlantic Ocean—A Case Study. Journal of Applied Meteorology and Climatology, 1991, 30, 1627-1635.	1.7	15
92	Airborne heterodyne measurements of stratospheric ClO, HCl, O3, and N2O during SESAME 1 over northern Europe. Journal of Geophysical Research, 1997, 102, 1391-1398.	3.3	15
93	Characterization of Water Vapor and Clouds During the Next-Generation Aircraft Remote Sensing for Validation (NARVAL) South Studies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 3114-3124.	2.3	15
94	A 1â€D variational retrieval of temperature, humidity, and liquid cloud properties: Performance under idealized and real conditions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1746-1766.	1.2	15
95	Impact of atmospheric aerosols on solar power. Meteorologische Zeitschrift, 2019, 28, 305-321.	0.5	15
96	How microphysical choices affect simulated infrared brightness temperatures. Atmospheric Research, 2015, 156, 67-79.	1.8	14
97	Horizontal-Humidity Gradient From One Single-Scanning Microwave Radiometer. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 336-340.	1.4	13
98	Investigating Water Vapor Variability by Ground-Based Microwave Radiometry: Evaluation Using Airborne Observations. IEEE Geoscience and Remote Sensing Letters, 2009, 6, 157-161.	1.4	11
99	Snowfall-Rate Retrieval for K- and W-Band Radar Measurements Designed in HyytiÃѬ҈¤Finland, and Tested at Ny-Ã…lesund, Svalbard, Norway. Journal of Applied Meteorology and Climatology, 2021, 60, 273-289.	0.6	11
100	Overlap statistics of shallow boundary layer clouds: Comparing groundâ€based observations with largeâ€eddy simulations. Geophysical Research Letters, 2015, 42, 8185-8191.	1.5	10
101	Assessment of Sampling Effects on Various Satellite-Derived Integrated Water Vapor Datasets Using GPS Measurements in Germany as Reference. Remote Sensing, 2020, 12, 1170.	1.8	10
102	Synoptic-to-Regional-Scale Analysis of Rainfall in the Atacama Desert (18°–26°S) Using a Long-Term Simulation with WRF. Monthly Weather Review, 2021, 149, 91-112.	0.5	10
103	A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means. Atmospheric Measurement Techniques, 2021, 14, 4829-4856.	1.2	10
104	Heterodyne Detection Of StratosphericTrace Gases At Submillimeter-Wave Frequencies. , 0, , .		9
105	Model predicted low-level cloud parameters. Atmospheric Research, 2006, 82, 83-101.	1.8	9
106	Model predicted low-level cloud parameters. Atmospheric Research, 2006, 82, 55-82.	1.8	9
107	Information Content of Millimeter-Wave Observations for Hydrometeor Properties in Mid-Latitudes. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 2287-2299.	2.7	9
108	Validating precipitation forecasts using remote sensor synergy: A case study approach. Meteorologische Zeitschrift, 2010, 19, 601-617.	0.5	9

#	Article	IF	CITATIONS
109	Regime-dependent evaluation of accumulated precipitation in COSMO. Theoretical and Applied Climatology, 2012, 108, 39-52.	1.3	9
110	Parallel Developments and Formal Collaboration between European Atmospheric Profiling Observatories and the U.S. ARM Research Program. Meteorological Monographs, 2016, 57, 29.1-29.34.	5.0	9
111	The Role of Moisture Conveyor Belts for Precipitation in the Atacama Desert. Geophysical Research Letters, 2021, 48, .	1.5	9
112	Evaluation of ice and snow content in the global numerical weather prediction model GME with CloudSat. Geoscientific Model Development, 2011, 4, 579-589.	1.3	8
113	Diurnal Dynamics of Wheat Evapotranspiration Derived from Ground-Based Thermal Imagery. Remote Sensing, 2014, 6, 9775-9801.	1.8	8
114	Water Vapor Tomography With Two Microwave Radiometers. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 419-423.	1.4	8
115	Benefit of high resolution COSMO reanalysis: The diurnal cycle of column-integrated water vapor over Germany. Meteorologische Zeitschrift, 2019, 28, 165-177.	0.5	8
116	Photovoltaic power potential in West Africa using long-term satellite data. Atmospheric Chemistry and Physics, 2020, 20, 12871-12888.	1.9	8
117	Millimeter wave spectroscopic measurements over the South Pole: 4. O3and N2O during 1995 and their correlations for two quasi-annual cycles. Journal of Geophysical Research, 1997, 102, 6109-6116.	3.3	7
118	Lidar Research Network Water Vapor and Wind. Meteorologische Zeitschrift, 2003, 12, 5-24.	0.5	6
119	A Standardized Atmospheric Measurement Data Archive for Distributed Cloud and Precipitation Process-Oriented Observations in Central Europe. Bulletin of the American Meteorological Society, 2019, 100, 1299-1314.	1.7	6
120	Atmospheric Gas Absorption Knowledge in the Submillimeter: Modeling, Field Measurements, and Uncertainty Quantification. Bulletin of the American Meteorological Society, 2019, 100, ES291-ES295.	1.7	6
121	Improvement of airborne retrievals of cloud droplet number concentration of trade wind cumulus using a synergetic approach. Atmospheric Measurement Techniques, 2019, 12, 1635-1658.	1.2	6
122	High Levels of CO ₂ Exchange During Synoptic‣cale Events Introduce Large Uncertainty Into the Arctic Carbon Budget. Geophysical Research Letters, 2021, 48, e2020GL092256.	1.5	6
123	Emission and scattering by clouds and precipitation. , 2006, , 101-224.		6
124	Case study of a moisture intrusion over the Arctic with the ICOsahedral Non-hydrostatic (ICON) model: resolution dependence of its representation. Atmospheric Chemistry and Physics, 2022, 22, 173-196.	1.9	6
125	Correlated millimeter wave measurements of ClO, N2O, and HNO3from McMurdo, Antarctica, during polar spring 1994. Journal of Geophysical Research, 1996, 101, 20925-20932.	3.3	5
126	Simulation of weather radar products from a mesoscale model. Physics and Chemistry of the Earth, 2000, 25, 1257-1261.	0.3	5

#	Article	IF	CITATIONS
127	Environmental conditions for polar low formation and development over the Nordic Seas: study of January cases based on the Arctic System Reanalysis. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 71, 1618131.	0.8	5
128	Multilayer cloud conditions in trade wind shallow cumulus – confronting two ICON model derivatives with airborne observations. Geoscientific Model Development, 2020, 13, 5757-5777.	1.3	5
129	Atmospheric rivers and associated precipitation patterns during the ACLOUD and PASCAL campaigns near Svalbard (May–June 2017): case studies using observations, reanalyses, and a regional climate model. Atmospheric Chemistry and Physics, 2022, 22, 441-463.	1.9	5
130	Cloud remote sensing by combining synergetic sensor information. Physics and Chemistry of the Earth, 2000, 25, 1043-1048.	0.3	4
131	Instruments, data and techniques for the assessment of the atmospheric noise emission in Satcom ground stations. , 2012, , .		4
132	Heat and moisture budgets from airborne measurements and high-resolution model simulations. Meteorology and Atmospheric Physics, 2012, 117, 47-61.	0.9	4
133	AWARDS: Advanced microwave radiometers for deep space stations. Space Communications, 2013, 22, 159-170.	0.6	4
134	Detection of land-surface-induced atmospheric water vapor patterns. Atmospheric Chemistry and Physics, 2020, 20, 1723-1736.	1.9	4
135	Towards a climatology of fog frequency in the Atacama Desert via multi-spectral satellite data and machine learning techniques. Journal of Applied Meteorology and Climatology, 2021, , .	0.6	4
136	Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic. Atmospheric Chemistry and Physics, 2022, 22, 7287-7317.	1.9	4
137	A ground based multi-sensor system for the remote sensing of clouds. Physics and Chemistry of the Earth, 1999, 24, 207-211.	0.3	3
138	A novel microwave radiometer for assessment of atmospheric propagation conditions for 10 and 90 GHz frequency bands. , 2008, , .		3
139	A Novel Ground-Based Microwave Radiometer for High Precision Atmospheric Observations between 10 and 90 GHz. , 2008, , .		3
140	EUREC ⁴ A's <i>Maria S.ÂMerian</i> ship-based cloud and micro rain radar observations of clouds and precipitation. Earth System Science Data, 2022, 14, 33-55.	3.7	3
141	Instruments, data and techniques for the assessment of tropospheric noise in deep space tracking. , 2012, , .		2
142	Synergetic use of LiDAR and microwave radiometer observations for boundary-layer height detection. , 2015, , .		2
143	Performance test of the synergetic use of simulated lidar and microwave radiometer observations for mixing-layer height detection. , 2015, , .		2
144	EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation. Space Sciences Series of ISSI, 2017, , 357-396.	0.0	2

#	Article	IF	CITATIONS
145	Frontiers in surface-based microwave and millimeter wavelength radiometry. , 0, , .		1
146	Microwave Radiometers for Deep Space radioscience experiments: Instrumental internal noise characterization. , 2012, , .		1
147	Adaptive estimation of the stable boundary-layer height using backscatter LiDAR data and a Kalman filter. , 2015, , .		1
148	The Second ARM Training and Science Application Event: Training the Next Generation of Atmospheric Scientists. Bulletin of the American Meteorological Society, 2019, 100, ES5-ES9.	1.7	1
149	Training Network for Young Atmospheric Researchers. Eos, 2016, 97, .	0.1	1
150	National Status Reports. , 2020, , 403-481.		1
151	Detection of atmospheric chlorine-compounds with an airborne submillimeter receiver. , 0, , .		0
152	Ground-based remote sensing of the cloudy atmosphere - towards an all-encompassing retrieval algorithm. , 2005, , JMA6.		0