Saburo Hosokawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7779916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Titanium-Based Hydrides as Heterogeneous Catalysts for Ammonia Synthesis. Journal of the American Chemical Society, 2017, 139, 18240-18246.	6.6	189
2	Efficient ammonia synthesis over a Ru/La _{0.5} Ce _{0.5} O _{1.75} catalyst pre-reduced at high temperature. Chemical Science, 2018, 9, 2230-2237.	3.7	142
3	Photocatalytic conversion of CO2 in water over Ag-modified La2Ti2O7. Applied Catalysis B: Environmental, 2015, 163, 241-247.	10.8	133
4	A Doping Technique that Suppresses Undesirable H ₂ Evolution Derived from Overall Water Splitting in the Highly Selective Photocatalytic Conversion of CO ₂ in and by Water. Chemistry - A European Journal, 2014, 20, 9906-9909.	1.7	119
5	Metalâ€Dependent Support Effects of Oxyhydrideâ€Supported Ru, Fe, Co Catalysts for Ammonia Synthesis. Advanced Energy Materials, 2018, 8, 1801772.	10.2	111
6	Highly efficient photocatalytic conversion of CO ₂ into solid CO using H ₂ O as a reductant over Ag-modified ZnGa ₂ O ₄ . Journal of Materials Chemistry A, 2015, 3, 11313-11319.	5.2	103
7	Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO ₂ with H ₂ O through the modification of Ag-loaded Ga ₂ O ₃ with a ZnGa ₂ O ₄ layer. Catalysis Science and Technology, 2016, 6, 1025-1032.	2.1	94
8	Highly selective photocatalytic conversion of CO2 by water over Ag-loaded SrNb2O6 nanorods. Applied Catalysis B: Environmental, 2017, 218, 770-778.	10.8	86
9	Elucidating strong metal-support interactions in Pt–Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes. Journal of Catalysis, 2018, 365, 277-291.	3.1	84
10	Effect of the chloride ion as a hole scavenger on the photocatalytic conversion of CO ₂ in an aqueous solution over Ni–Al layered double hydroxides. Physical Chemistry Chemical Physics, 2015, 17, 17995-18003.	1.3	76
11	A Theoretical Investigation on CO Oxidation by Singleâ€Atom Catalysts M ₁ /γâ€Al ₂ O ₃ (M=Pd, Fe, Co, and Ni). ChemCatChem, 2017, 9, 1222-1229	9 ^{1.8}	76
12	Affinity order among noble metals and CeO2. Applied Catalysis A: General, 2005, 289, 115-120.	2.2	75
13	Strong metal-support interaction between Pt and SiO ₂ following high-temperature reduction: a catalytic interface for propane dehydrogenation. Chemical Communications, 2017, 53, 6937-6940.	2.2	61
14	Dehydrogenative synthesis of benzimidazoles under mild conditions with supported iridium catalysts. Catalysis Science and Technology, 2016, 6, 1677-1684.	2.1	59
15	Photocatalytic Conversion of CO2 by H2O over Ag-Loaded SrO-Modified Ta2O5. Bulletin of the Chemical Society of Japan, 2015, 88, 431-437.	2.0	56
16	Effective Driving of Ag-Loaded and Al-Doped SrTiO ₃ under Irradiation at λ > 300 nm for the Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Applied Energy Materials, 2020, 3, 1468-1475.	2.5	56
17	Dynamic Behavior of Rh Species in Rh/Al ₂ O ₃ Model Catalyst during Three-Way Catalytic Reaction: An <i>Operando</i> X-ray Absorption Spectroscopy Study. Journal of the American Chemical Society, 2018, 140, 176-184.	6.6	55
18	Which is an Intermediate Species for Photocatalytic Conversion of CO ₂ by H ₂ O as the Electron Donor: CO ₂ Molecule, Carbonic Acid, Bicarbonate, or Carbonate lons?. Journal of Physical Chemistry C, 2017, 121, 8711-8721.	1.5	54

#	Article	IF	CITATIONS
19	Modification of Ga ₂ O ₃ by an Ag–Cr core–shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO ₂ by H ₂ O. Chemical Communications, 2018, 54, 1053-1056.	2.2	53
20	Dehydrogenation of Propane over Silica‣upported Platinum–Tin Catalysts Prepared by Direct Reduction: Effects of Tin/Platinum Ratio and Reduction Temperature. ChemCatChem, 2014, 6, 2680-2691.	1.8	49
21	A ZnTa ₂ O ₆ photocatalyst synthesized via solid state reaction for conversion of CO ₂ into CO in water. Catalysis Science and Technology, 2016, 6, 4978-4985.	2.1	46
22	Oxidation characteristics of Ru/CeO2 catalyst. Applied Catalysis A: General, 2005, 288, 67-73.	2.2	45
23	Recyclable Solid Ruthenium Catalysts Supported on Metal Oxides for the Addition of Carboxylic Acids to Terminal Alkynes. Advanced Synthesis and Catalysis, 2010, 352, 3045-3052.	2.1	44
24	Photocatalytic conversion of CO2 in an aqueous solution using various kinds of layered double hydroxides. Catalysis Today, 2015, 251, 140-144.	2.2	43
25	Oxygen storage capacity of Sr ₃ Fe ₂ O _{7â^î} having high structural stability. Journal of Materials Chemistry A, 2015, 3, 13540-13545.	5.2	43
26	Enhancement of CO Evolution by Modification of Ga ₂ O ₃ with Rare-Earth Elements for the Photocatalytic Conversion of CO ₂ by H ₂ O. Langmuir, 2017, 33, 13929-13935.	1.6	43
27	CO ₂ capture, storage, and conversion using a praseodymium-modified Ga ₂ O ₃ photocatalyst. Journal of Materials Chemistry A, 2017, 5, 19351-19357.	5.2	38
28	A heterogeneous Ru/CeO2 catalyst effective for transfer-allylation from homoallyl alcohols to aldehydes. Chemical Communications, 2009, , 4112.	2.2	37
29	Investigation of the electrochemical and photoelectrochemical properties of Ni–Al LDH photocatalysts. Physical Chemistry Chemical Physics, 2016, 18, 13811-13819.	1.3	36
30	Visible-Light Selective Photooxidation of Aromatic Hydrocarbons via Ligand-to-Metal Charge Transfer Transition on Nb ₂ O ₅ . Journal of Physical Chemistry C, 2017, 121, 22854-22861.	1.5	36
31	Morphology and structure of rare earth borate (REBO3) synthesized by glycothermal reaction. Journal of Materials Science, 2008, 43, 2276-2285.	1.7	35
32	Drastic improvement in the photocatalytic activity of Ga ₂ O ₃ modified with Mg–Al layered double hydroxide for the conversion of CO ₂ in water. Sustainable Energy and Fuels, 2017, 1, 1740-1747.	2.5	35
33	Fabrication of well-shaped Sr2KTa5O15 nanorods with a tetragonal tungsten bronze structure by a flux method for artificial photosynthesis. Applied Catalysis B: Environmental, 2016, 199, 272-281.	10.8	34
34	Dual Ag/Co cocatalyst synergism for the highly effective photocatalytic conversion of CO ₂ by H ₂ O over Al-SrTiO ₃ . Chemical Science, 2021, 12, 4940-4948.	3.7	34
35	Effect of the Preparation Conditions of Ru/CeO2 Catalysts for the Liquid Phase Oxidation of Benzyl Alcohol. Catalysis Letters, 2009, 129, 394-399.	1.4	33
36	Visible-light-assisted selective catalytic reduction of NO with NH ₃ on porphyrin derivative-modified TiO ₂ photocatalysts. Catalysis Science and Technology, 2015, 5, 556-561.	2.1	33

#	Article	IF	CITATIONS
37	Effect of Thickness of Chromium Hydroxide Layer on Ag Cocatalyst Surface for Highly Selective Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Sustainable Chemistry and Engineering, 2019, 7, 2083-2090.	3.2	32
38	Ceria-supported ruthenium catalysts for the synthesis of indole via dehydrogenative N-heterocyclization. Catalysis Science and Technology, 2011, 1, 1340.	2.1	31
39	Synthesis of Rare Earth Ironâ€Mixed Oxide Nanoparticles by Solvothermal Methods. Journal of the American Ceramic Society, 2009, 92, 2847-2853.	1.9	29
40	Role of lattice oxygen and oxygen vacancy sites in platinum group metal catalysts supported on Sr ₃ Fe ₂ O _{7â~δ} for NO-selective reduction. Catalysis Science and Technology, 2018, 8, 147-153.	2.1	29
41	Isolated Platinum Atoms in Ni/γ-Al ₂ O ₃ for Selective Hydrogenation of CO ₂ toward CH ₄ . Journal of Physical Chemistry C, 2019, 123, 23446-23454.	1.5	29
42	Catalytic Addition of Aromatic Cï£;H Bonds to Vinylsilanes in the Presence of Ru/CeO ₂ . ChemCatChem, 2010, 2, 1223-1225.	1.8	28
43	Synthesis of metastable rare-earth–iron mixed oxide with the hexagonal crystal structure. Journal of Solid State Chemistry, 2013, 197, 402-407.	1.4	28
44	Highly Active and Stable Pt–Sn/SBA-15 Catalyst Prepared by Direct Reduction for Ethylbenzene Dehydrogenation: Effects of Sn Addition. Industrial & Engineering Chemistry Research, 2017, 56, 7160-7172.	1.8	28
45	Enhanced oxygen-release/storage properties of Pd-loaded Sr ₃ Fe ₂ O _{7â^ʾδ} . Physical Chemistry Chemical Physics, 2017, 19, 14107-14113.	1.3	27
46	Oxygen Storage Property and Chemical Stability of SrFe _{1–<i>x</i>} Ti _{<i>x</i>} O _{3â~îî} with Robust Perovskite Structure. Journal of Physical Chemistry C, 2017, 121, 19358-19364.	1.5	26
47	Enhanced CO evolution for photocatalytic conversion of CO2 by H2O over Ca modified Ga2O3. Communications Chemistry, 2020, 3, .	2.0	26
48	Optimized Synthesis of Agâ€Modified Alâ€Doped SrTiO ₃ Photocatalyst for the Conversion of CO ₂ Using H ₂ O as an Electron Donor. ChemistrySelect, 2020, 5, 8779-8786.	0.7	26
49	Highly Selective Photocatalytic Conversion of Carbon Dioxide by Water over Al-SrTiO ₃ Photocatalyst Modified with Silver–Metal Dual Cocatalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 9327-9335.	3.2	26
50	Optimized synthesis method for K/Co3O4 catalyst towards direct decomposition of N2O. Journal of Materials Science, 2011, 46, 797-805.	1.7	25
51	Visibleâ€Lightâ€Assisted Selective Catalytic Reduction of Nitric Oxide with Ammonia over Dyeâ€Modified Titania Photocatalysts. ChemCatChem, 2015, 7, 1818-1825.	1.8	25
52	Flux method fabrication of potassium rare-earth tantalates for CO2 photoreduction using H2O as an electron donor. Catalysis Today, 2018, 300, 173-182.	2.2	24
53	Ni–Pt Alloy Nanoparticles with Isolated Pt Atoms and Their Cooperative Neighboring Ni Atoms for Selective Hydrogenation of CO ₂ Toward CH ₄ Evolution: <i>In Situ</i> and Transient Fourier Transform Infrared Studies. ACS Applied Nano Materials, 2020, 3, 9633-9644.	2.4	24
54	Intermolecular Coupling of Alkynes with Acrylates by Recyclable Oxideâ€Supported Ruthenium Catalysts: Formation of Distorted Ruthenium(IV)â€oxo Species on Ceria as a Key Precursor of Active Species. Advanced Synthesis and Catalysis, 2011, 353, 2837-2843.	2.1	23

#	Article	IF	CITATIONS
55	Selective reduction of NO over Cu/Al2O3: Enhanced catalytic activity by infinitesimal loading of Rh on Cu/Al2O3. Molecular Catalysis, 2017, 442, 74-82.	1.0	23
56	NOx Oxidation and Storage Properties of a Ruddlesden–Popper-Type Sr3Fe2O7â^'δ-Layered Perovskite Catalyst. ACS Applied Materials & Interfaces, 2019, 11, 26985-26993.	4.0	23
57	Development of Ceria-Supported Ruthenium Catalysts Effective for Various Synthetic Reactions. Catalysis Surveys From Asia, 2011, 15, 1-11.	1.0	22
58	Development of Rh-Doped Ga ₂ O ₃ Photocatalysts for Reduction of CO ₂ by H ₂ O as an Electron Donor at a More than 300 nm Wavelength. Journal of Physical Chemistry C, 2018, 122, 21132-21139.	1.5	22
59	Thermal stabilities of hexagonal and orthorhombic YbFeO3 synthesized by solvothermal method and their catalytic activities for methane combustion. Research on Chemical Intermediates, 2011, 37, 291-296.	1.3	21
60	Striking Oxygen-Release/Storage Properties of Fe-Site-Substituted Sr ₃ Fe ₂ O _{7â^îî} . Journal of Physical Chemistry C, 2018, 122, 11186-11193.	1.5	21
61	Development of Ceria-supported Ruthenium Catalysts for Green Organic Transformation Processes. Journal of the Japan Petroleum Institute, 2013, 56, 69-79.	0.4	16
62	Mechanism of NO–CO reaction over highly dispersed cuprous oxide on γ-alumina catalyst using a metal–support interfacial site in the presence of oxygen: similarities to and differences from biological systems. Catalysis Science and Technology, 2018, 8, 3833-3845.	2.1	16
63	Role of Bicarbonate Ions in Aqueous Solution as a Carbon Source for Photocatalytic Conversion of CO ₂ into CO. ACS Applied Energy Materials, 2019, 2, 5397-5405.	2.5	16
64	Self-regeneration of a Ni–Cu alloy catalyst during a three-way catalytic reaction. Physical Chemistry Chemical Physics, 2019, 21, 18816-18822.	1.3	16
65	Highly Selective Linear Dimerization of Styrenes by Ceria upported Ruthenium Catalysts. ChemCatChem, 2012, 4, 2062-2067.	1.8	15
66	Recent progress in photocatalytic conversion of carbon dioxide over gallium oxide and its nanocomposites. Current Opinion in Chemical Engineering, 2018, 20, 114-121.	3.8	15
67	Fe-Modified CuNi Alloy Catalyst as a Nonprecious Metal Catalyst for Three-Way Catalysis. Industrial & Engineering Chemistry Research, 2020, 59, 19907-19917.	1.8	15
68	Pore-Structure-Controlled Coagulates of CeO2 Nanoparticles for Supporting Ru Catalysts in Liquid Phase Oxidation of Benzyl Alcohol. Journal of the Ceramic Society of Japan, 2007, 115, 592-596.	0.5	14
69	Synthesis of Highly Effective CeO x –MnO y –BaO Catalysts for Direct NO Decomposition. Catalysis Letters, 2012, 142, 32-41.	1.4	14
70	Solvothermal Synthesis of Ca2Nb2O7 Fine Particles and Their High Activity for Photocatalytic Water Splitting into H2 and O2 under UV Light Irradiation. Chemistry Letters, 2015, 44, 1001-1003.	0.7	14
71	Synthesis of metal oxides with improved performance using a solvothermal method. Journal of the Ceramic Society of Japan, 2016, 124, 870-874.	0.5	14
72	A detailed insight into the catalytic reduction of NO operated by Cr–Cu nanostructures embedded in a CeO ₂ surface. Physical Chemistry Chemical Physics, 2018, 20, 25592-25601.	1.3	14

#	Article	IF	CITATIONS
73	The importance of direct reduction in the synthesis of highly active Pt–Sn/SBA-15 for <i>n</i> -butane dehydrogenation. Catalysis Science and Technology, 2019, 9, 947-956.	2.1	14
74	Oxidation and Storage Mechanisms for Nitrogen Oxides on Variously Terminated (001) Surfaces of SrFeO _{3â^Î} and Sr ₃ Fe ₂ O _{7â^Î} Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 7216-7226.	4.0	14
75	Promoter effect of Pd species on Mn oxide catalysts supported on rare-earth-iron mixed oxide. Catalysis Science and Technology, 2016, 6, 7868-7874.	2.1	13
76	Pd/SrFe _{1–<i>x</i>} Ti _{<i>x</i>} O _{3â^î^} as Environmental Catalyst: Purification of Automotive Exhaust Gases. ACS Applied Materials & Interfaces, 2018, 10, 22182-22189.	4.0	13
77	Synthesis of Mesoporous Needle-Shaped Ytterbium Oxide Crystals by Solvothermal Treatment of Ytterbium Chloride. Journal of the American Ceramic Society, 2007, 90, 1215-1221.	1.9	12
78	Efficient oxygen storage property of Sr–Fe mixed oxide as automotive catalyst support. Journal of Materials Chemistry A, 2019, 7, 1013-1021.	5.2	12
79	Pt–Co Alloy Nanoparticles on a γâ€Al ₂ O ₃ Support: Synergistic Effect between Isolated Electronâ€Rich Pt and Co for Automotive Exhaust Purification. ChemPlusChem, 2019, 84, 447-456.	1.3	12
80	Dynamics of the Lattice Oxygen in a Ruddlesden–Popper-type Sr3Fe2O7â~'δ Catalyst during NO Oxidation. ACS Catalysis, 2020, 10, 2528-2537.	5.5	12
81	Fabrication of lead-free piezoelectric NaNbO ₃ ceramics at low temperature using NaNbO ₃ nanoparticles synthesized by solvothermal method. Journal of the Ceramic Society of Japan, 2013, 121, 116-119.	0.5	11
82	Sodium Cation Substitution in Sr ₂ KTa ₅ O ₁₅ toward Enhancement of Photocatalytic Conversion of CO ₂ Using H ₂ O as an Electron Donor. ACS Omega, 2017, 2, 8187-8197.	1.6	11
83	Excellent Catalytic Activity of a Pdâ€Promoted MnO x Catalyst for Purifying Automotive Exhaust Gases. ChemCatChem, 2020, 12, 4276-4280.	1.8	11
84	Solvothermal Reaction of Rare-Earth Metals in 2-Methoxyethanol and 2-Aminoethanol. Journal of the American Ceramic Society, 2006, 89, 1205-1211.	1.9	10
85	A feasibility study of "range-extended―EXAFS measurement at the Pt L ₃ -edge of Pt/Al ₂ O ₃ in the presence of Au ₂ O ₃ . Journal of Analytical Atomic Spectrometry, 2018, 33, 84-89.	1.6	10
86	Low-temperature NO oxidation using lattice oxygen in Fe-site substituted SrFeO3â^î^. Physical Chemistry Chemical Physics, 2020, 22, 24181-24190.	1.3	10
87	Effect of Zn in Ag-Loaded Zn-Modified ZnTa ₂ O ₆ for Photocatalytic Conversion of CO ₂ by H ₂ O. Journal of Physical Chemistry C, 2021, 125, 1304-1312.	1.5	10
88	Efficient photocatalytic carbon monoxide production from ammonia and carbon dioxide by the aid of artificial photosynthesis. Chemical Science, 2017, 8, 5797-5801.	3.7	9
89	CO and C3H6 oxidation over platinum-group metal (PGM) catalysts supported on Mn-modified hexagonal YbFeO3. Catalysis Today, 2019, 332, 183-188.	2.2	9
90	Important Role of Strontium Atom on the Surface of Sr ₂ KTa ₅ O ₁₅ with a Tetragonal Tungsten Bronze Structure to Improve Adsorption of CO ₂ for Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Applied Materials & amp; Interfaces, 2019, 11, 37875-37884.	4.0	9

#	Article	IF	CITATIONS
91	Effect of Surface Reforming via O ₃ Treatment on the Electrochemical CO ₂ Reduction Activity of a Ag Cathode. ACS Applied Energy Materials, 2020, 3, 6552-6560.	2.5	9
92	Real-time observation of the effect of oxygen storage materials on Pd-based three-way catalysts under ideal automobile exhaust conditions: an <i>operando</i> study. Catalysis Science and Technology, 2021, 11, 6182-6190.	2.1	9
93	Strong Metal–Support Interaction in Pd/Ca2AlMnO5+δ: Catalytic NO Reduction over Mn-Doped CaO Shell. ACS Catalysis, 2021, 11, 7996-8003.	5.5	9
94	NO _{<i>x</i>} Storage Performance at Low Temperature over Platinum Group Metal-Free SrTiO ₃ -Based Material. ACS Applied Materials & Interfaces, 2021, 13, 29482-29490.	4.0	9
95	Shift of active sites via in-situ photodeposition of chromate achieving highly selective photocatalytic conversion of CO2 by H2O over ZnTa2O6. Applied Catalysis B: Environmental, 2021, 298, 120508.	10.8	9
96	Oxygen Incorporation into Infinite-layer Structure <i>A</i> FeO2 (<i>A</i> = Sr or Ca). Chemistry Letters, 2013, 42, 732-734.	0.7	8
97	Catalytic Properties of Mn-Modified Hexagonal YbFeO3: Noble-metal-free Combustion Catalysts. Chemistry Letters, 2014, 43, 874-876.	0.7	8
98	Photocatalytic Conversion of Carbon Dioxide over A ₂ BTa ₅ O ₁₅ (A) Tj ETQ Engineering, 2018, 6, 8247-8255.	q0 0 0 rgB 3.2	BT /Overlock 8
99	Local Structure and L ₁ - and L ₃ -Edge X-ray Absorption Near Edge Structures of Middle Lanthanoid Elements (Eu, Gd, Tb, and Dy) in Their Complex Oxides. Inorganic Chemistry, 2021, 60, 9359-9367.	1.9	8
100	Synthesis of ZrO2–TiO2 solid solutions by various synthetic methods in the region of high zirconium contents. Journal of Materials Science, 2008, 43, 2198-2205.	1.7	7
101	Effect of Cr Species on Photocatalytic Stability during the Conversion of CO ₂ by H ₂ O. Journal of Physical Chemistry C, 2019, 123, 2894-2899.	1.5	7
102	Formation of CH ₄ at the Metalâ€Support Interface of Pt/Al ₂ O ₃ During Hydrogenation of CO ₂ : <i>Operando</i> XASâ€DRIFTS Study. ChemCatChem, 2022, 14, .	1.8	7
103	Oxygen Storage Capacity of Co-Doped SrTiO ₃ with High Redox Performance. Journal of Physical Chemistry C, 2022, 126, 4415-4422.	1.5	7
104	Identification of hydrogen species on Pt/Al ₂ O ₃ by <i>in situ</i> inelastic neutron scattering and their reactivity with ethylene. Catalysis Science and Technology, 2021, 11, 116-123.	2.1	6
105	Synthesis of Gallium–Aluminum Dawsonites and their Crystal Structures. Journal of the American Ceramic Society, 2010, 93, 3908-3915.	1.9	5
106	Combustion activities of the Ru catalysts supported on hexagonal YbFeO3. Journal of the Ceramic Society of Japan, 2011, 119, 850-854.	0.5	5
107	Quantum Chemical Computation-Driven Development of Cu-Shell–Ru-Core Nanoparticle Catalyst for NO Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 20251-20256.	1.5	5
108	Self-Regeneration Process of Ni–Cu Alloy Catalysts during a Three-Way Catalytic Reaction—An <i>Operando</i> Study. ACS Applied Materials & Interfaces, 2020, 12, 55994-56003.	4.0	5

#	Article	IF	CITATIONS
109	Photoelectrochemical investigation of the role of surface-modified Yb species in the photocatalytic conversion of CO2 by H2O over Ga2O3 photocatalysts. Catalysis Today, 2020, 352, 18-26.	2.2	5
110	Enhancement of the Activities of γ-Ga2O3–Al2O3 Catalysts for Methane-SCR of NO by Treatment with NH3. Catalysis Letters, 2011, 141, 1338-1344.	1.4	4
111	Oxygen Release and Storage Property of Fe–Al Spinel Compounds: A Three-Way Catalytic Reaction over a Supported Rh Catalyst. ACS Applied Materials & Interfaces, 2021, 13, 24615-24623.	4.0	4
112	Development of Zinc Hydroxide as an Abundant and Universal Cocatalyst for the Selective Photocatalytic Conversion of CO 2 by H 2 O. ChemCatChem, 2021, 13, 4313.	1.8	4
113	Structure of Yttrium Aluminium Garnet Obtained by the Glycothermal Method. Advances in Science and Technology, 2006, 45, 691.	0.2	3
114	In situ time-resolved XAS study on metal-support-interaction-induced morphology change of PtO2 nanoparticles supported on γ-Al2O3 under H2 reduction. Catalysis Today, 2022, , .	2.2	3
115	Model building of metal oxide surfaces and vibronic coupling density as a reactivity index: Regioselectivity of CO2 adsorption on Ag-loaded Ga2O3. Chemical Physics Letters, 2019, 715, 239-243.	1.2	2
116	A theoretical investigation into the role of catalyst support and regioselectivity of molecular adsorption on a metal oxide surface: NO reduction on Cu/γ-alumina. Physical Chemistry Chemical Physics, 2021, 23, 2575-2585.	1.3	2
117	Observation of Adsorbed Hydrogen Species on Supported Metal Catalysts by Inelastic Neutron Scattering. Topics in Catalysis, 2021, 64, 660-671.	1.3	2
118	Illustrating catalysis with a handmade molecular model set: catalytic oxidation of carbon monoxide over a platinum surface. Chemistry Teacher International, 2021, 3, 431-439.	0.9	2
119	Isomerization of <i>n</i> -Hexadecane over Pt–WO ₃ Catalysts Supported on TiO ₂ –SiO ₂ Mixed Oxides Synthesized by Glycothermal Method. Journal of the Japan Petroleum Institute, 2011, 54, 361-365.	0.4	1
120	Visibleâ€Lightâ€Assisted Selective Catalytic Reduction of Nitric Oxide with Ammonia over Dyeâ€Modified Titania Photocatalysts. ChemCatChem, 2015, 7, 1723-1723.	1.8	1
121	Regioselectivity of H ₂ Adsorption on Ga ₂ O ₃ Surface Based on Vibronic Coupling Density Analysis. Journal of Computer Chemistry Japan, 2018, 17, 138-141.	0.0	1
122	Effect of the in situ addition of chromate ions on H2 evolution during the photocatalytic conversion of CO2 using H2O as the electron donor. Catalysis Today, 2023, 410, 273-281.	2.2	1
123	Low-Temperature NOx Storage Capability of YBaCo4O7+Î′ Originating from Large Oxygen Nonstoichiometry. Industrial & Engineering Chemistry Research, 2021, 60, 9817-9823.	1.8	0
124	(Invited) Photocatalytic Conversion of CO2 By H2o As an Electron Donor over Ag/ZnGa2O4/Ga2O3. ECS Meeting Abstracts, 2015, , .	0.0	0
125	Dynamic behavior of Pd/Ca2AlMnO5+ $\hat{1}'$ for purifying automotive exhaust gases under fluctuating oxygen concentration. Catalysis Today, 2022, , .	2.2	0