Michael David Dickey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7779835/publications.pdf

Version: 2024-02-01

248 papers

23,768 citations

73 h-index

9786

146 g-index

261 all docs

261 docs citations

times ranked

261

16407 citing authors

#	Article	IF	CITATIONS
1	Stretchable and Soft Electronics using Liquid Metals. Advanced Materials, 2017, 29, 1606425.	21.0	1,222
2	Eutectic Galliumâ€Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature. Advanced Functional Materials, 2008, 18, 1097-1104.	14.9	1,170
3	Liquid metals: fundamentals and applications in chemistry. Chemical Society Reviews, 2018, 47, 4073-4111.	38.1	763
4	3D Printing of Free Standing Liquid Metal Microstructures. Advanced Materials, 2013, 25, 5081-5085.	21.0	749
5	Foldable Printed Circuit Boards on Paper Substrates. Advanced Functional Materials, 2010, 20, 28-35.	14.9	630
6	Eutectic Gallium–Indium (EGaIn): A Moldable Liquid Metal for Electrical Characterization of Selfâ€Assembled Monolayers. Angewandte Chemie - International Edition, 2008, 47, 142-144.	13.8	533
7	Emerging Applications of Liquid Metals Featuring Surface Oxides. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18369-18379.	8.0	522
8	Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core. Advanced Functional Materials, 2013, 23, 2308-2314.	14.9	501
9	Reversibly Deformable and Mechanically Tunable Fluidic Antennas. Advanced Functional Materials, 2009, 19, 3632-3637.	14.9	496
10	Self-folding of polymer sheets using local light absorption. Soft Matter, 2012, 8, 1764-1769.	2.7	466
11	Transformable liquid-metal nanomedicine. Nature Communications, 2015, 6, 10066.	12.8	466
12	Selfâ€Healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics. Advanced Materials, 2013, 25, 1589-1592.	21.0	385
13	Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nature Communications, 2013, 4, 2257.	12.8	380
14	Liquid metal enabled microfluidics. Lab on A Chip, 2017, 17, 974-993.	6.0	354
15	Flexible Liquid Metal Alloy (EGaln) Microstrip Patch Antenna. IEEE Transactions on Antennas and Propagation, 2012, 60, 2151-2156.	5.1	340
16	Giant and switchable surface activity of liquid metal via surface oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14047-14051.	7.1	309
17	Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter, 2014, 10, 1337-1348.	2.7	301
18	"2D or not 2D― Shape-programming polymer sheets. Progress in Polymer Science, 2016, 52, 79-106.	24.7	292

#	Article	IF	CITATIONS
19	Lightâ€Powered Electrical Switch Based on Cargoâ€Lifting Azobenzene Monolayers. Angewandte Chemie - International Edition, 2008, 47, 3407-3409.	13.8	276
20	Methods to pattern liquid metals. Journal of Materials Chemistry C, 2015, 3, 3834-3841.	5.5	275
21	Emergence of Liquid Metals in Nanotechnology. ACS Nano, 2019, 13, 7388-7395.	14.6	269
22	Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nature Communications, 2019, 10, 1300.	12.8	267
23	Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Applied Energy, 2017, 202, 736-745.	10.1	260
24	Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers. Advanced Functional Materials, 2017, 27, 1605630.	14.9	257
25	Sequential self-folding of polymer sheets. Science Advances, 2017, 3, e1602417.	10.3	254
26	Attributes, Fabrication, and Applications of Galliumâ€Based Liquid Metal Particles. Advanced Science, 2020, 7, 2000192.	11.2	246
27	Tough and stretchable ionogels by in situ phase separation. Nature Materials, 2022, 21, 359-365.	27.5	246
28	Optical Antenna Arrays on a Fiber Facet for <i>in Situ</i> Surface-Enhanced Raman Scattering Detection. Nano Letters, 2009, 9, 1132-1138.	9.1	235
29	Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. Small, 2015, 11, 6397-6403.	10.0	234
30	Thread as a Matrix for Biomedical Assays. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1722-1728.	8.0	224
31	Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nature Communications, 2017, 8, 14482.	12.8	219
32	Inherently aligned microfluidic electrodes composed of liquid metal. Lab on A Chip, 2011, 11, 905.	6.0	216
33	Charge Transport and Rectification in Arrays of SAM-Based Tunneling Junctions. Nano Letters, 2010, 10, 3611-3619.	9.1	213
34	Antibacterial Liquid Metals: Biofilm Treatment <i>via</i> Magnetic Activation. ACS Nano, 2020, 14, 802-817.	14.6	198
35	Towards Allâ€Soft Matter Circuits: Prototypes of Quasiâ€Liquid Devices with Memristor Characteristics. Advanced Materials, 2011, 23, 3559-3564.	21.0	189
36	Shape-transformable liquid metal nanoparticles in aqueous solution. Chemical Science, 2017, 8, 3832-3837.	7.4	181

#	Article	IF	CITATIONS
37	Liquid Metal Direct Write and 3D Printing: A Review. Advanced Materials Technologies, 2020, 5, .	5.8	180
38	Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer. Nano Letters, 2017, 17, 2138-2145.	9.1	179
39	Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nature Communications, 2019, 10, 865.	12.8	179
40	Facile Conversion of Hydroxy Double Salts to Metal–Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin-Film Templates. Journal of the American Chemical Society, 2015, 137, 13756-13759.	13.7	174
41	3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab on A Chip, 2016, 16, 1812-1820.	6.0	174
42	Vacuum filling of complex microchannels with liquid metal. Lab on A Chip, 2017, 17, 3043-3050.	6.0	169
43	Influence of Water on the Interfacial Behavior of Gallium Liquid Metal Alloys. ACS Applied Materials & Light Representation (2014), 6, 22467-22473.	8.0	168
44	A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity. Journal of Applied Physics, $2015,117,.$	2.5	159
45	Ultrasoft Liquid Metal Elastomer Foams with Positive and Negative Piezopermittivity for Tactile Sensing. Advanced Functional Materials, 2020, 30, 2002611.	14.9	154
46	Silicones for Stretchable and Durable Soft Devices: Beyond Sylgard-184. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11261-11268.	8.0	149
47	Viscoelastic properties of oxide-coated liquid metals. Journal of Rheology, 2009, 53, 1305-1326.	2.6	139
48	Nanoskiving: A New Method To Produce Arrays of Nanostructures. Accounts of Chemical Research, 2008, 41, 1566-1577.	15.6	135
49	A Technique to Transfer Metallic Nanoscale Patterns to Small and Non-Planar Surfaces. ACS Nano, 2009, 3, 59-65.	14.6	132
50	Gallium Liquid Metal: The Devil's Elixir. Annual Review of Materials Research, 2021, 51, 381-408.	9.3	130
51	Liquid metal actuation by electrical control of interfacial tension. Applied Physics Reviews, 2016, 3, 031103.	11.3	129
52	A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Lab on A Chip, 2012, 12, 3961.	6.0	124
53	Liquidâ€Metal Microdroplets Formed Dynamically with Electrical Control of Size and Rate. Advanced Materials, 2016, 28, 604-609.	21.0	116
54	lonic Current Rectification in Softâ€Matter Diodes with Liquidâ€Metal Electrodes. Advanced Functional Materials, 2012, 22, 625-631.	14.9	113

#	Article	IF	Citations
55	Flexible thermoelectric generators for body heat harvesting $\hat{a} \in \mathbb{C}$ Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects. Applied Energy, 2020, 262, 114370.	10.1	113
56	Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels. Advanced Functional Materials, 2015, 25, 671-678.	14.9	112
57	Rapid Openâ€Air Digital Light 3D Printing of Thermoplastic Polymer. Advanced Materials, 2019, 31, e1903970.	21.0	112
58	Phase Separation in Liquid Metal Nanoparticles. Matter, 2019, 1, 192-204.	10.0	110
59	Liquid Metal Nanoparticles as Initiators for Radical Polymerization of Vinyl Monomers. ACS Macro Letters, 2019, 8, 1522-1527.	4.8	109
60	Fieldâ€Controlled Electrical Switch with Liquid Metal. Advanced Science, 2017, 4, 1700169.	11.2	107
61	A frequency shifting liquid metal antenna with pressure responsiveness. Applied Physics Letters, 2011, 99, .	3.3	106
62	Self-Folding Origami Microstrip Antennas. IEEE Transactions on Antennas and Propagation, 2014, 62, 5416-5419.	5.1	106
63	Soft electrodes combining hydrogel and liquid metal. Soft Matter, 2018, 14, 3296-3303.	2.7	99
64	Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene- <i>alt</i> -maleic anhydride) in aqueous solutions. Nanoscale, 2018, 10, 19871-19878.	5.6	98
65	Materials tactile logic via innervated soft thermochromic elastomers. Nature Communications, 2019, 10, 4187.	12.8	98
66	Elastic Multifunctional Liquid–Metal Fibers for Harvesting Mechanical and Electromagnetic Energy and as Selfâ€Powered Sensors. Advanced Energy Materials, 2021, 11, 2100411.	19.5	97
67	Energy Harvesting and Storage with Soft and Stretchable Materials. Advanced Materials, 2021, 33, e2004832.	21.0	91
68	Reconfigurable liquid metal circuits by Laplace pressure shaping. Applied Physics Letters, 2012, 101, .	3.3	88
69	On the Design of Microfluidic Implant Coil for Flexible Telemetry System. IEEE Sensors Journal, 2014, 14, 1074-1080.	4.7	85
70	Ultrastretchable, cyclable and recyclable 1- and 2-dimensional conductors based on physically cross-linked thermoplastic elastomer gels. Soft Matter, 2013, 9, 7695.	2.7	84
71	A Liquid Metal Mediated Metallic Coating for Antimicrobial and Antiviral Fabrics. Advanced Materials, 2021, 33, e2104298.	21.0	84
72	Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation. ACS Nano, 2008, 2, 800-808.	14.6	82

#	Article	lF	Citations
73	A Liquid Metal Artificial Muscle. Advanced Materials, 2021, 33, e2103062.	21.0	82
74	Hybridâ€Filler Stretchable Conductive Composites: From Fabrication to Application. Small Science, 2021, 1, 2000080.	9.9	80
75	Liquid Metal Composites with Enhanced Thermal Conductivity and Stability Using Molecular Thermal Linker. Advanced Materials, 2021, 33, e2103104.	21.0	79
76	Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. Lab on A Chip, 2013 , 13 , $522-526$.	6.0	78
77	Functional Liquid Metal Nanoparticles Produced by Liquidâ€Based Nebulization. Advanced Materials Technologies, 2019, 4, 1800420.	5.8	78
78	Liquid Metal Composites with Anisotropic and Unconventional Piezoconductivity. Matter, 2020, 3, 824-841.	10.0	77
79	Interfacial Rheology of Gallium-Based Liquid Metals. Langmuir, 2019, 35, 11774-11783.	3.5	7 5
80	Patterning and Reversible Actuation of Liquid Gallium Alloys by Preventing Adhesion on Rough Surfaces. ACS Applied Materials & Surfaces, 2018, 10, 44686-44695.	8.0	74
81	Hydrogel/Elastomer Laminates Bonded via Fabric Interphases for Stimuli-Responsive Actuators. Matter, 2019, 1, 674-689.	10.0	74
82	Ultrastretchable Elastic Shape Memory Fibers with Electrical Conductivity. Advanced Science, 2019, 6, 1901579.	11.2	74
83	Mechanochromic Stretchable Electronics. ACS Applied Materials & Interfaces, 2018, 10, 29918-29924.	8.0	72
84	Directed Assembly of Liquid Metal–Elastomer Conductors for Stretchable and Selfâ€Healing Electronics. Advanced Materials, 2020, 32, e2001642.	21.0	72
85	Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules. Science Advances, 2021, 7, eabi8249.	10.3	71
86	Selective and directional actuation of elastomer films using chained magnetic nanoparticles. Nanoscale, 2016, 8, 1309-1313.	5.6	68
87	Self-healing materials for soft-matter machines and electronics. NPG Asia Materials, 2019, 11, .	7.9	68
88	Steering liquid metal flow in microchannels using low voltages. Lab on A Chip, 2015, 15, 3905-3911.	6.0	64
89	Oxidation-Mediated Fingering in Liquid Metals. Physical Review Letters, 2017, 119, 174502.	7.8	63
90	Patterned Liquid Metal Contacts for Printed Carbon Nanotube Transistors. ACS Nano, 2018, 12, 5482-5488.	14.6	63

#	Article	IF	CITATIONS
91	Direct write printing of a self-encapsulating liquid metal–silicone composite. Soft Matter, 2020, 16, 6608-6618.	2.7	63
92	Antipathogenic properties and applications of low-dimensional materials. Nature Communications, 2021, 12, 3897.	12.8	63
93	Vinyl ethers in ultraviolet curable formulations for step and flash imprint lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 131.	1.6	62
94	Bending of Responsive Hydrogel Sheets Guided by Fieldâ€Assembled Microparticle Endoskeleton Structures. Small, 2016, 12, 2283-2290.	10.0	62
95	Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose, 2014, 21, 2557-2566.	4.9	61
96	UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles. Scientific Reports, 2019, 9, 5345.	3.3	61
97	A Pressure Responsive Fluidic Microstrip Open Stub Resonator Using a Liquid Metal Alloy. IEEE Microwave and Wireless Components Letters, 2012, 22, 577-579.	3.2	59
98	Interfacial Tension Modulation of Liquid Metal via Electrochemical Oxidation. Advanced Intelligent Systems, 2021, 3, 2100024.	6.1	59
99	Fabrication of Conjugated Polymer Nanowires by Edge Lithography. Nano Letters, 2008, 8, 2100-2105.	9.1	58
100	Three-dimensional folding of pre-strained polymer sheets <i>via</i> absorption of laser light. Journal of Applied Physics, 2014, 115, .	2.5	58
101	Liquidâ€Metalâ€Enabled Mechanicalâ€Energyâ€Induced CO ₂ Conversion. Advanced Materials, 2022, 34, e2105789.	'21.0	58
102	Self-Running Liquid Metal Drops that Delaminate Metal Films at Record Velocities. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23163-23171.	8.0	57
103	A Compound Frequency- and Polarization- Reconfigurable Crossed Dipole Using Multidirectional Spreading of Liquid Metal. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 79-82.	4.0	57
104	Synthesis of Liquid Gallium@Reduced Graphene Oxide Coreâ€"Shell Nanoparticles with Enhanced Photoacoustic and Photothermal Performance. Journal of the American Chemical Society, 2022, 144, 6779-6790.	13.7	57
105	Production of Liquid Metal Spheres by Molding. Metals, 2014, 4, 465-476.	2.3	55
106	Electric field and dewetting induced hierarchical structure formation in polymer/polymer/air trilayers. Chaos, 2005, 15, 047506.	2.5	54
107	Are Contact Angle Measurements Useful for Oxide-Coated Liquid Metals?. Langmuir, 2021, 37, 10914-10923.	3.5	54
108	Cofabrication: A Strategy for Building Multicomponent Microsystems. Accounts of Chemical Research, 2010, 43, 518-528.	15.6	53

#	Article	IF	Citations
109	Wicking–Polarizationâ€Induced Water Cluster Size Effect on Triboelectric Evaporation Textiles. Advanced Materials, 2021, 33, e2007352.	21.0	53
110	Toughening stretchable fibers via serial fracturing of a metallic core. Science Advances, 2019, 5, eaat4600.	10.3	52
111	Photocurable Pillar Arrays Formed via Electrohydrodynamic Instabilities. Chemistry of Materials, 2006, 18, 2043-2049.	6.7	51
112	Novel 3-D Structures in Polymer Films by Coupling External and Internal Fields. Langmuir, 2006, 22, 4315-4318.	3.5	51
113	Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces. Lab on A Chip, 2017, 17, 710-716.	6.0	50
114	Soft and Stretchable Liquid Metal Composites with Shape Memory and Healable Conductivity. ACS Applied Materials & District Science (2021), 13, 28916-28924.	8.0	50
115	Applications of liquid metals in nanotechnology. Nanoscale Horizons, 2022, 7, 141-167.	8.0	47
116	Ionoprinted Multi-Responsive Hydrogel Actuators. Micromachines, 2016, 7, 98.	2.9	46
117	Electrowetting-actuated liquid metal for RF applications. Journal of Micromechanics and Microengineering, 2017, 27, 025010.	2.6	45
118	Controllable curvature from planar polymer sheets in response to light. Soft Matter, 2017, 13, 2299-2308.	2.7	45
119	Flexible thermoelectric generator with liquid metal interconnects and low thermal conductivity silicone filler. Npj Flexible Electronics, 2021, 5, .	10.7	44
120	Wireless Wearable Electrochemical Sensing Platform with Zero-Power Osmotic Sweat Extraction for Continuous Lactate Monitoring. ACS Sensors, 2022, 7, 2037-2048.	7.8	44
121	Surface modification of PET film via a large area atmospheric pressure plasma: An optical analysis of the plasma and surface characterization of the polymer film. Surface and Coatings Technology, 2017, 309, 371-381.	4.8	43
122	Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from $1.24\mathrm{to}~3.1\mathrm{eV}$ by electrochemical reduction of surface oxides. Applied Physics Letters, 2016, 109, .	3.3	42
123	Overcoming Rayleighâ€"Plateau instabilities: Stabilizing and destabilizing liquid-metal streams via electrochemical oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19026-19032.	7.1	42
124	Self-folding of polymer sheets using microwaves and graphene ink. RSC Advances, 2015, 5, 89254-89261.	3.6	40
125	Healable, Recyclable, and Multifunctional Soft Electronics Based on Biopolymer Hydrogel and Patterned Liquid Metal. Small, 2022, 18, e2201643.	10.0	40
126	Vacuum-filling of liquid metals for 3D printed RF antennas. Additive Manufacturing, 2017, 18, 221-227.	3.0	39

#	Article	IF	Citations
127	Surface Modification of Galliumâ€Based Liquid Metals: Mechanisms and Applications in Biomedical Sensors and Soft Actuators. Advanced Intelligent Systems, 2021, 3, 2000159.	6.1	39
128	Wearable Osmotic-Capillary Patch for Prolonged Sweat Harvesting and Sensing. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 8071-8081.	8.0	39
129	Preparation of porous polymer membranes using nano- or micro-pillar arrays as templates. Polymer, 2004, 45, 8469-8474.	3.8	38
130	Controlling the Kinetics of Contact Electrification with Patterned Surfaces. Journal of the American Chemical Society, 2009, 131, 8746-8747.	13.7	37
131	Shearâ€Driven Directâ€Write Printing of Roomâ€Temperature Galliumâ€Based Liquid Metal Alloys. Advanced Engineering Materials, 2019, 21, 1900400.	3.5	37
132	High Thermal Conductivity Silicone Elastomer Doped with Graphene Nanoplatelets and Eutectic Galn Liquid Metal Alloy. ECS Journal of Solid State Science and Technology, 2019, 8, P357-P362.	1.8	37
133	Study of the kinetics of step and flash imprint lithography photopolymerization. AICHE Journal, 2005, 51, 2547-2555.	3.6	36
134	Modelling of shape memory polymer sheets that self-fold in response to localized heating. Soft Matter, 2015, 11, 7827-7834.	2.7	36
135	Electrically reconfigurable terahertz signal processing devices using liquid metal components. Nature Communications, 2018, 9, 4202.	12.8	35
136	Planar, Multifunctional 3D Printed Antennas Using Liquid Metal Parasitics. IEEE Access, 2019, 7, 134245-134255.	4.2	35
137	Kinetic parameters for step and flash imprint lithography photopolymerization. AICHE Journal, 2006, 52, 777-784.	3.6	34
138	Effects of etch barrier densification on step and flash imprint lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2553.	1.6	33
139	A simple electroless plating solution for 3D printed microwave components. , 2016, , .		33
140	Metallophobic Coatings to Enable Shape Reconfigurable Liquid Metal Inside 3D Printed Plastics. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12709-12718.	8.0	33
141	A Soft Variableâ€Area Electricalâ€Doubleâ€Layer Energy Harvester. Advanced Materials, 2021, 33, e2103142.	21.0	33
142	Surface wrinkling by chemical modification of poly(dimethylsiloxane)-based networks during sputtering. Soft Matter, 2013, 9, 7797.	2.7	32
143	Principles of long-term fluids handling in paper-based wearables with capillary–evaporative transport. Biomicrofluidics, 2020, 14, 034112.	2.4	32
144	A Review of Liquid Metal Embrittlement: Cracking Open the Disparate Mechanisms. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2158-2172.	2.2	32

#	Article	IF	CITATIONS
145	Drawing liquid metal wires at room temperature. Extreme Mechanics Letters, 2016, 7, 55-63.	4.1	31
146	Broad-spectrum treatment of bacterial biofilms using magneto-responsive liquid metal particles. Journal of Materials Chemistry B, 2020, 8, 10776-10787.	5.8	31
147	Strain-controlled diffraction of light from stretchable liquid metal micro-components. Sensors and Actuators A: Physical, 2013, 193, 246-250.	4.1	30
148	Simple geometric model to describe self-folding of polymer sheets. Physical Review E, 2014, 89, 042601.	2.1	30
149	Aerosol Spray Deposition of Liquid Metal and Elastomer Coatings for Rapid Processing of Stretchable Electronics. Micromachines, 2021, 12, 146.	2.9	30
150	Liquid Metal Interdigitated Capacitive Strain Sensor with Normal Stress Insensitivity. Advanced Intelligent Systems, 2022, 4, .	6.1	28
151	Design and demonstration of a novel micro-Coulter counter utilizing liquid metal electrodes. Journal of Micromechanics and Microengineering, 2012, 22, 115012.	2.6	27
152	Amidation of Polyesters Is Slow in Nonaqueous Solvents: Efficient Amidation of Poly(ethylene) Tj ETQq0 0 0 rgBT ACS Applied Materials & Interfaces, 2016, 8, 35641-35649.	Overlock 8.0	27 10 Tf 50 467
153	Liquid metal motor. IScience, 2021, 24, 101911.	4.1	27
154	High-aspect ratio polymeric pillar arrays formed via electrohydrodynamic patterning. Journal of Materials Science, 2008, 43, 117-122.	3.7	26
155	Liquid Metal-Triggered Assembly of Phenolic Nanocoatings with Antioxidant and Antibacterial Properties. ACS Applied Nano Materials, 2021, 4, 2987-2998.	5.0	26
156	Direct imprinting of dielectric materials for dual damascene processing., 2005, 5751, 210.		25
157	Lighter and Stronger: Cofabricated Electrodes and Variable Stiffness Elements in Dielectric Actuators. Advanced Intelligent Systems, 2020, 2, 2000069.	6.1	24
158	Reversible Underwater Adhesion for Soft Robotic Feet by Leveraging Electrochemically Tunable Liquid Metal Interfaces. ACS Applied Materials & Samp; Interfaces, 2021, 13, 37904-37914.	8.0	24
159	Liquid metal elastomer with flytrap-inspired pillar structure for stress sensing. Composites Science and Technology, 2021, 216, 109066.	7.8	24
160	Advances in Step and Flash imprint lithography. , 2003, , .		23
161	Subnanometer Replica Molding of Molecular Steps on Ionic Crystals. Nano Letters, 2010, 10, 4140-4145.	9.1	23
162	Localized Instabilities of Liquid Metal Films via Inâ€Plane Recapillarity. Advanced Materials Interfaces, 2016, 3, 1600546.	3.7	23

#	Article	IF	Citations
163	3D Visibleâ€Lightâ€Driven Plasmonic Oxide Frameworks Deviated from Liquid Metal Nanodroplets. Advanced Functional Materials, 2021, 31, 2106397.	14.9	23
164	Skinâ€Inspired Capacitive Stress Sensor with Large Dynamic Range via Bilayer Liquid Metal Elastomers. Advanced Materials Technologies, 2022, 7, .	5.8	23
165	Liquid Metal Hybrid Composites with High-Sensitivity and Large Dynamic Range Enabled by Micro- and Macrostructure Engineering. ACS Applied Polymer Materials, 2021, 3, 5302-5315.	4.4	22
166	Electrically Addressable Parallel Nanowires with 30 nm Spacing from Micromolding and Nanoskiving. Nano Letters, 2008, 8, 4568-4573.	9.1	21
167	Self-Folding of Thick Polymer Sheets Using Gradients of Heat. Journal of Mechanisms and Robotics, 2016, 8, .	2.2	21
168	A fully coupled thermoâ€viscoelastic finite element model for selfâ€folding shape memory polymer sheets. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1207-1219.	2.1	21
169	Liquid-Metal-Filled 3-D Antenna Array Structure With an Integrated Feeding Network. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 739-742.	4.0	21
170	Thermo-mechanical transformation of shape memory polymers from initially flat discs to bowls and saddles. Smart Materials and Structures, 2019, 28, 045011.	3.5	21
171	Counterpropagating Gradients of Antibacterial and Antifouling Polymer Brushes. Biomacromolecules, 2022, 23, 424-430.	5.4	21
172	Mesoscale modeling for SFIL simulating polymerization kinetics and densification. , 2004, , .		20
173	Vinyl ether formulations for step and flash imprint lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2967.	1.6	20
174	Selfâ€Folding Metal Origami. Advanced Intelligent Systems, 2019, 1, 1900059.	6.1	20
175	Shaped after print. Nature Materials, 2016, 15, 379-380.	27.5	19
176	Liquid–Solid Mixtures of Ga Metal Infused with Cu Microparticles and Nanoparticles for Microscale and Nanoscale Patterning of Solid Metals at Room Temperature. ACS Applied Nano Materials, 2020, 3, 12064-12070.	5.0	19
177	Interactions between Liquid Metal Droplets and Bacterial, Fungal, and Mammalian Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	19
178	A bottom-up approach to generate isotropic liquid metal network in polymer-enabled 3D thermal management. Chemical Engineering Journal, 2022, 439, 135674.	12.7	19
179	Thiol-containing polymeric embedding materials for nanoskiving. Journal of Materials Chemistry C, 2013, 1, 121-130.	5 . 5	18
180	Rapid prototyping of low loss 3D printed waveguides for millimeter-wave applications. , 2017, , .		18

#	Article	IF	CITATIONS
181	Osmotically Enabled Wearable Patch for Sweat Harvesting and Lactate Quantification. Micromachines, 2021, 12, 1513.	2.9	18
182	Noncontact rotation, levitation, and acceleration of flowing liquid metal wires. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
183	Electromechanical instabilities of thermoplastics: Theory and in situ observation. Applied Physics Letters, 2012, 101, 141911.	3.3	16
184	Liquid metals at room temperature. Physics Today, 2021, 74, 30-36.	0.3	16
185	Stretchable and Soft Electroadhesion Using Liquidâ€Metal Subsurface Microelectrodes. Advanced Materials Technologies, 2021, 6, 2100263.	5.8	16
186	Liquid Metals for Soft and Stretchable Electronics. Microsystems and Nanosystems, 2016, , 3-30.	0.1	15
187	Electrowetting without external voltage using paint-on electrodes. Lab on A Chip, 2017, 17, 1069-1075.	6.0	15
188	Jumping liquid metal droplets controlled electrochemically. Applied Physics Letters, 2021, 118, .	3.3	15
189	Stretchable bioelectronics—Current and future. MRS Bulletin, 2017, 42, 960-967.	3.5	14
190	Oxide-mediated mechanisms of gallium foam generation and stabilization during shear mixing in air. Soft Matter, 2020, 16, 5801-5805.	2.7	14
191	Step and Flash Imprint Lithography Modeling and Process Development. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 417-419.	0.3	13
192	Soft, Stretchable, and Pneumatically Triggered Thermochromic Optical Filters with Embedded Phosphorescence. ACS Applied Materials & Interfaces, 2020, 12, 26424-26431.	8.0	13
193	RESHAPE: A Liquid Metal-Based Reshapable Aperture for Compound Frequency, Pattern, and Polarization Reconfiguration. IEEE Transactions on Antennas and Propagation, 2021, 69, 2581-2594.	5.1	13
194	Microfluidic coaxial transmission line and phase shifter. Microwave and Optical Technology Letters, 2014, 56, 1459-1462.	1.4	12
195	Patterning via self-organization and self-folding: Beyond conventional lithography. MRS Bulletin, 2016, 41, 93-96.	3.5	12
196	Making Light Work of Metal Bending: Laser Forming in Rapid Prototyping. Quantum Beam Science, 2020, 4, 44.	1.2	12
197	Pump-free feedback control of a frequency reconfigurable liquid metal monopole. , 2015, , .		11
198	Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets. Journal of Applied Physics, 2017, 122, .	2.5	11

#	Article	IF	CITATIONS
199	3D Printed Coaxial Transmission Line Using Low Loss Dielectric and Liquid Metal Conductor., 2018,,.		11
200	Shrink Films Get a Grip. ACS Applied Polymer Materials, 2019, 1, 1088-1095.	4.4	10
201	Towards Wearable Electrochemical Lactate Sensing using Osmotic-Capillary Microfluidic Pumping. , 2019, , .		10
202	Dynamic control of reflective/diffusive optical surfaces on EGaIn liquid metal. Optical Materials Express, 2021, 11, 2099.	3.0	10
203	Self-Folding PCB Kirigami: Rapid Prototyping of 3D Electronics via Laser Cutting and Forming. ACS Applied Materials & Description (2018) Applied Materials & Description (2018	8.0	10
204	In-plane deformation of shape memory polymer sheets programmed using only scissors. Polymer, 2014, 55, 5948-5952.	3.8	9
205	Robust Pressure-Actuated Liquid Metal Devices Showing Reconfigurable Electromagnetic Effects at GHz Frequencies. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 3122-3130.	4.6	9
206	Corrosion resistant coating based on thiol-ene polymeric system. Progress in Organic Coatings, 2019, 133, 350-356.	3.9	8
207	Transistors Formed from a Single Lithography Step Using Information Encoded in Topography. Small, 2010, 6, 2050-2057.	10.0	7
208	In vitro electrochemical assessment of electrodes for neurostimulation in roach biobots. PLoS ONE, 2018, 13, e0203880.	2.5	7
209	Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass. Composite Structures, 2022, 279, 114759.	5.8	7
210	An Automated Statistical Process Control Study of Inline Mixing Using Spectrophotometric Detection. Journal of Chemical Education, 2006, 83, 110.	2.3	6
211	Planarization for reverse-tone step and flash imprint lithography. , 2006, 6151, 688.		6
212	Microfluidic channels fabricated from poly(vinylmethylsiloxane) networks that resist swelling by organic solvents. Lab on A Chip, 2013, 13, 4317.	6.0	6
213	Liquid metals as ultra-stretchable, soft, and shape reconfigurable conductors. Proceedings of SPIE, 2015, , .	0.8	6
214	A Method to Manipulate Surface Tension of a Liquid Metal via Surface Oxidation and Reduction. Journal of Visualized Experiments, 2016, , e53567.	0.3	6
215	Shape memory polymers for selfâ€folding via compression of thermoplastic sheets. Journal of Applied Polymer Science, 2018, 135, 46889.	2.6	6
216	Optimizing the energy balance to achieve autonomous self-powering for vigilant health and IoT applications. Journal of Physics: Conference Series, 2019, 1407, 012001.	0.4	5

#	Article	IF	Citations
217	Application of a Laser Cutter to Pattern Wrinkles on Polymer Films. ACS Applied Polymer Materials, 2020, 2, 1848-1855.	4.4	5
218	3-D printing of liquid metals for stretchable and flexible conductors. Proceedings of SPIE, 2014, , .	0.8	4
219	Lightâ€Induced Buckles Localized by Polymeric Inks Printed on Bilayer Films. Small, 2018, 14, e1704460.	10.0	4
220	Reversibly Reconfigurable Liquid Metal Patch Antenna Using A Superhydrophobic Spray-Coating. , 2018, , .		4
221	Investigation of biasing conditions and energy dissipation in electrochemically controlled capillarity liquid metal electronics. Electronics Letters, 2020, 56, 323-325.	1.0	4
222	Effect of surface interactions on the settlement of particles on a sinusoidally corrugated substrate. RSC Advances, 2020, 10, 11348-11356.	3.6	4
223	EML webinar overview: Liquid metals at the extreme. Extreme Mechanics Letters, 2020, 40, 100863.	4.1	4
224	Stiff or Extensible in Seconds: Lightâ€Induced Corrugations in Thin Polymer Sheets. Advanced Materials Technologies, 2021, 6, .	5.8	4
225	A Wearable Patch for Prolonged Sweat Lactate Harvesting and Sensing. , 2021, 2021, 6863-6866.		4
226	Microfluidics: Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels (Adv. Funct. Mater. 5/2015). Advanced Functional Materials, 2015, 25, 654-654.	14.9	3
227	Buckled Topography to Enhance Light Absorption in Thin Film Organic Photovoltaics Comprising CuPc/C ₆₀ Bilayer Laminates. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1251-1261.	2.8	3
228	Sensors: Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers (Adv. Funct. Mater. 20/2017). Advanced Functional Materials, 2017, 27, .	14.9	3
229	Superhydrophobic/oleophobic coatings based on a catalyst driven thiolâ€epoxyâ€acrylate ternary system. Journal of Applied Polymer Science, 2018, 135, 46710.	2.6	3
230	Robust pressure-actuated liquid metal devices showing reconfigurable electromagnetic effects at GHz frequencies. , 2014, , .		2
231	Using liquid metal alloy (EGaln) to electrochemically enhance SS stimulation electrodes for biobotic applications., 2016, 2016, 2141-2144.		2
232	Photocurable pillar arrays formed via AC- and ultrasound-induced electrohydrodynamic instabilities. , 2006, 6151, 936.		1
233	Modeling of Self-Assembly Dynamics of Photolithographically Patterned MUFFINS Biosensor Arrays. Materials Research Society Symposia Proceedings, 2007, 1002, 1.	0.1	1
234	Recent applications of liquid metals featuring nanoscale surface oxides. Proceedings of SPIE, 2016, , .	0.8	1

#	Article	IF	CITATIONS
235	A river (of liquid metal) runs through it. National Science Review, 2020, 7, 721-722.	9.5	1
236	Energy Harvesting and Storage: Energy Harvesting and Storage with Soft and Stretchable Materials (Adv. Mater. 19/2021). Advanced Materials, 2021, 33, 2170151.	21.0	1
237	Flexible and Stretchable Liquid Metal Electronics. , 2020, , 185-230.		1
238	Interactions between Liquid Metal Droplets and Bacterial, Fungal, and Mammalian Cells (Adv. Mater.) Tj ETQq0 (0 0 ggBT /C	Overlock 10 Tf
239	Advances in bioelectromagnetics for implantable systems. , 2012, , .		0
240	Correction to "Self-Running Liquid Metal Drops that Delaminate Metal Films at Record Velocities― ACS Applied Materials & Interfaces, 2016, 8, 15855-15855.	8.0	0
241	Liquid metals for active terahertz waveguides. , 2017, , .		0
242	Polymeric encapsulation of liquids via plasma surface polymerization. Journal of Applied Polymer Science, 2020, 137, 48880.	2.6	0
243	Deposition of silicate coatings on poly(ethylene terephthalate) for improved scratch and solvent resistance. Journal of Applied Polymer Science, 2022, 139, 51800.	2.6	0
244	Functionalized Fiber Optic Devices for Surface Enhanced Raman Scattering Detection and Optical Trapping., 2009,,.		0
245	Active THz Waveguides Enabled by Liquid Metal Actuation., 2017,,.		0
246	Terahertz waveguide signal processing: passive and active devices. , 2019, , .		0
247	Le gallium, un métal liquide d'avenir. Pourlascience Fr, 2022, N° 532 – février, 48-54.	0.0	0
248	Enhancement of pressureâ€sensitive adhesive by CO ² laser treatment. Advanced Engineering Materials, 0, , .	3.5	0