Ji-Wook Jang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7779797/ji-wook-jang-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

76
papers
6,058
citations
h-index
77
g-index

81
ext. papers
ext. citations
11.7
avg, IF

5.88
L-index

#	Paper	IF	Citations
76	Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system. <i>Nature Catalysis</i> , 2022 , 5, 37-44	36.5	3
75	Alkali-Metal-Mediated Reversible Chemical Hydrogen Storage Using Seawater <i>Jacs Au</i> , 2021 , 1, 2339-2	2348	2
74	Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode. <i>Nature Communications</i> , 2021 , 12, 6644	17.4	2
73	High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. <i>Applied Catalysis B: Environmental</i> , 2021 , 284, 119690	21.8	18
72	Unassisted photocatalytic H2O2 production under visible light by fluorinated polymer-TiO2 heterojunction. <i>Chemical Engineering Journal</i> , 2021 , 418, 129346	14.7	9
71	Spontaneous stepwise formation of polar-facet-dominant ZnO crystals for enhanced catalytic H2O2 generation. <i>Applied Surface Science</i> , 2021 , 561, 150061	6.7	1
70	Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production. <i>Science Advances</i> , 2020 , 6, eaaz3944	14.3	31
69	Nature of Nitrogen Incorporation in BiVO4 Photoanodes through Chemical and Physical Methods. <i>Solar Rrl</i> , 2020 , 4, 1900290	7.1	14
68	Phosphomolybdic Acid as a Catalyst for Oxidative Valorization of Biomass and Its Application as an Alternative Electron Source. <i>ACS Catalysis</i> , 2020 , 10, 2060-2068	13.1	13
67	High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode. <i>Nature Communications</i> , 2020 , 11, 5509	17.4	33
66	Immobilizing single atom catalytic sites onto highly reduced carbon hosts: FeN4/CNT as a durable oxygen reduction catalyst for NaBir batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18891-18902	13	17
65	High-Performance Hydrogen Evolution by Ru Single Atoms and Nitrided-Ru Nanoparticles Implanted on N-Doped Graphitic Sheet. <i>Advanced Energy Materials</i> , 2019 , 9, 1900931	21.8	131
64	Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge. <i>Chemical Society Reviews</i> , 2019 , 48, 1908-1971	58.5	415
63	Demonstration of a 50 cm2 BiVO4 tandem photoelectrochemical-photovoltaic water splitting device. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 2366-2379	5.8	48
62	Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. <i>Nature Communications</i> , 2019 , 10, 5123	17.4	25
61	Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of 年e2O3 Photoanode. <i>ChemCatChem</i> , 2019 , 11, 157-179	5.2	71
60	Strong O 2p-Fe 3d Hybridization Observed in Solution-Grown Hematite Films by Soft X-ray Spectroscopies. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 927-932	3.4	10

(2014-2018)

59	Tailorable Au Nanoparticles Embedded in Epitaxial TiO Thin Films for Tunable Optical Properties. <i>ACS Applied Materials & Discrete Section</i> , 10, 32895-32902	9.5	29
58	Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment. <i>Advanced Energy Materials</i> , 2017 , 7, 1701536	21.8	78
57	Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. <i>Nature Communications</i> , 2016 , 7, 13380	17.4	197
56	Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. <i>Chemical Science</i> , 2016 , 7, 3347-3354	9.4	147
55	Self-Assembled Heteroepitaxial Oxide Nanocomposite for Photoelectrochemical Solar Water Oxidation. <i>Chemistry of Materials</i> , 2016 , 28, 3017-3023	9.6	23
54	Enabling unassisted solar water splitting by iron oxide and silicon. <i>Nature Communications</i> , 2015 , 6, 744	7 17.4	359
53	Defective ZnFeDhanorods with oxygen vacancy for photoelectrochemical water splitting. <i>Nanoscale</i> , 2015 , 7, 19144-51	7.7	138
52	Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO4 Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. <i>ACS Nano</i> , 2015 , 9, 11820-9	16.7	172
51	Single-Crystalline Thin Films for Studying Intrinsic Properties of BiFeO3BrTiO3 Solid Solution Photoelectrodes in Solar Energy Conversion. <i>Chemistry of Materials</i> , 2015 , 27, 6635-6641	9.6	40
50	Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system. <i>Energy and Environmental Science</i> , 2015 , 8, 3597-3604	35.4	122
49	Awakening Solar Water-Splitting Activity of ZnFe2O4 Nanorods by Hybrid Microwave Annealing. <i>Advanced Energy Materials</i> , 2015 , 5, 1401933	21.8	85
48	Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction. <i>Nanoscale</i> , 2015 , 7, 7624-31	7.7	80
47	Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing. <i>Scientific Reports</i> , 2014 , 4, 5492	4.9	56
46	An exceptionally facile method to produce layered double hydroxides on a conducting substrate and their application for solar water splitting without an external bias. <i>Energy and Environmental Science</i> , 2014 , 7, 2301	35.4	33
45	Aqueous-solution route to zinc telluride films for application to COI eduction. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5852-7	16.4	72
44	Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. <i>APL Materials</i> , 2014 , 2, 010703	5.7	87
43	A Stable and Efficient Hematite Photoanode in a Neutral Electrolyte for Solar Water Splitting: Towards Stability Engineering. <i>Advanced Energy Materials</i> , 2014 , 4, 1400476	21.8	89
42	Mo-Compound/CNT-Graphene Composites as Efficient Catalytic Electrodes for Quantum-Dot-Sensitized Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1300775	21.8	79

41	Observation and Alteration of Surface States of Hematite Photoelectrodes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 17054-17059	3.8	79
40	Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. <i>Journal of Catalysis</i> , 2014 , 317, 126-134	7.3	56
39	Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. <i>ACS Applied Materials & Discounty amp; Interfaces</i> , 2014 , 6, 17762-	99.5	103
38	Aqueous-Solution Route to Zinc Telluride Films for Application to CO2 Reduction. <i>Angewandte Chemie</i> , 2014 , 126, 5962-5967	3.6	24
37	Photochemistry: A Stable and Efficient Hematite Photoanode in a Neutral Electrolyte for Solar Water Splitting: Towards Stability Engineering (Adv. Energy Mater. 13/2014). <i>Advanced Energy Materials</i> , 2014 , 4, n/a-n/a	21.8	3
36	Facile fabrication of two-dimensional inorganic nanostructures and their conjugation to nanocrystals. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4497	7.1	7
35	Self-assembled foam-like graphene networks formed through nucleate boiling. <i>Scientific Reports</i> , 2013 , 3, 1396	4.9	65
34	A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNTgraphene hybrid support. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8007	13	105
33	Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. <i>Scientific Reports</i> , 2013 , 3, 2681	4.9	519
32	Anion-Doped Mixed Metal Oxide Nanostructures Derived from Layered Double Hydroxide as Visible Light Photocatalysts. <i>Advanced Functional Materials</i> , 2013 , 23, 2348-2356	15.6	75
31	TiN nanoparticles on CNT-graphene hybrid support as noble-metal-free counter electrode for quantum-dot-sensitized solar cells. <i>ChemSusChem</i> , 2013 , 6, 261-7	8.3	49
30	Photocatalytic selective oxidation of the terminal methyl group of dodecane with molecular oxygen over atomically dispersed Ti in a mesoporous SiO2 matrix. <i>Green Chemistry</i> , 2013 , 15, 3387	10	9
29	Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 5375-83	16.4	261
28	Highly Efficient and Stable Cadmium Chalcogenide Quantum Dot/ZnO Nanowires for Photoelectrochemical Hydrogen Generation. <i>Chemistry of Materials</i> , 2013 , 25, 184-189	9.6	96
27	A novel role of three dimensional graphene foam to prevent heater failure during boiling. <i>Scientific Reports</i> , 2013 , 3, 1960	4.9	68
26	Photocatalytic synthesis of pure and water-dispersible graphene monosheets. <i>Chemistry - A European Journal</i> , 2012 , 18, 2762-7	4.8	27
25	A method for synthesizing ZnOBarbonaceous species nanocomposites, and their conversion to quasi-single crystal mesoporous ZnO nanostructures. <i>RSC Advances</i> , 2012 , 2, 566-572	3.7	7
24	In-situ synthesis, local structure, photoelectrochemical property of Fe-intercalated titanate nanotube. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 11081-11089	6.7	10

(2009-2012)

Self-assembled gold nanoparticle-mixed metal oxide nanocomposites for self-sensitized dye degradation under visible light irradiation. <i>Langmuir</i> , 2012 , 28, 17530-6	4	26
Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding. <i>Energy and Environmental Science</i> , 2012 , 5, 6375-6382	35.4	75
Effects of postannealing process on the properties of RuO2 films and their performance as electrodes in organic thin film transistors or solar cells. <i>ACS Applied Materials & Description</i> (1997) 1012, 4, 4588-94	9.5	21
Porous ZnO-ZnSe nanocomposites for visible light photocatalysis. <i>Nanoscale</i> , 2012 , 4, 2066-71	7.7	85
GrapheneBarbon nanotube composite as an effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film. <i>RSC Advances</i> , 2012 , 2, 9415	3.7	86
Light-Induced Cleaning of CdS and ZnS Nanoparticles: Superiority to Annealing as a Postsynthetic Treatment of Functional Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 15427-15431	3.8	3
Phosphate Doping into Monoclinic BiVO4 for Enhanced Photoelectrochemical Water Oxidation Activity. <i>Angewandte Chemie</i> , 2012 , 124, 3201-3205	3.6	82
Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3147-51	16.4	364
A Method for Modifying the Crystalline Nature and Texture of ZnO Nanostructure Surfaces. <i>Crystal Growth and Design</i> , 2011 , 11, 5615-5620	3.5	5
Three-dimensional type II ZnO/ZnSe heterostructures and their visible light photocatalytic activities. <i>Langmuir</i> , 2011 , 27, 10243-50	4	137
Solution-based fabrication of ZnO/ZnSe heterostructure nanowire arrays for solar energy conversion. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17816		36
Formation of amorphous zinc citrate spheres and their conversion to crystalline ZnO nanostructures. <i>Langmuir</i> , 2011 , 27, 371-8	4	45
Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis. <i>CrystEngComm</i> , 2010 , 12, 3929	3.3	162
Exposed crystal face controlled synthesis of 3D ZnO superstructures. <i>Langmuir</i> , 2010 , 26, 14255-62	4	83
Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays. <i>Nanoscale</i> , 2010 , 2, 2199-202	7.7	26
Photocatalytic overall water splitting with dual-bed system under visible light irradiation. International Journal of Hydrogen Energy, 2009 , 34, 3243-3249	6.7	47
N-Doped ZnS Nanoparticles Prepared through an Inorganic Drganic Hybrid Complex ZnS [piperazine] 0.5. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20445-20451	3.8	26
Enhanced Photocatalytic Hydrogen Production from WaterMethanol Solution by Nickel	3.8	66
	degradation under visible light irradiation. Langmuir, 2012, 28, 17530-6 Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding. Energy and Environmental Science, 2012, 5, 6375-6382 Effects of postannealing process on the properties of RuO2 films and their performance as electrodes in organic thin film transistors or solar cells. ACS Applied Materials & Description of Samp; Interfaces, 2012, 4, 4588-94 Porous ZnO-ZnSe nanocomposites for visible light photocatalysis. Nanoscale, 2012, 4, 2066-71 Graphenetarbon nanotube composite as an effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film. RSC Advances, 2012, 2, 9415 Light-Induced Cleaning of CdS and ZnS Nanoparticles. Superiority to Annealing as a Postsynthetic Treatment of Functional Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 15427-15431 Phosphate Doping into Monoclinic BIVO4 for Enhanced Photoelectrochemical Water Oxidation Activity. Angewandte Chemie, 2012, 124, 3201-3205 Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angewandte Chemie - International Edition, 2012, 51, 3147-51 A Method for Modifying the Crystalline Nature and Texture of ZnO Nanostructure Surfaces. Crystal Growth and Design, 2011, 11, 5615-5620 Three-dimensional type II ZnO/ZnSe heterostructures and their visible light photocatalytic activities. Langmuir, 2011, 27, 10243-50 Solution-based fabrication of ZnO/ZnSe heterostructure nanowire arrays for solar energy conversion. Journal of Materials Chemistry, 2011, 21, 17816 Formation of amorphous zinc citrate spheres and their conversion to crystalline ZnO nanostructures. Langmuir, 2011, 27, 371-8 Carbon-doped ZnO nanostructures synthesis of 3D ZnO superstructures. Langmuir, 2010, 26, 14255-62 Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays. Nanoscale, 2010, 2, 2199-202 Photocatalytic overall water splitting wit	degradation under visible light irradiation. Langmulir, 2012, 28, 17530-6 Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding. Energy and Environmental Science, 2012, 5, 6375-6382 Effects of postannealing process on the properties of RuO2 films and their performance as electrodes in organic thin film transistors or solar cells. ACS Applied Materials Ramp; Interfaces, 2012, 4, 4588-94 Porous ZnO-ZnSe nanocomposites for visible light photocatalysis. Nanoscale, 2012, 4, 2066-71 GrapheneBarbon nanotube composite as an effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film. RSC Advances, 2012, 2, 9415 Light-Induced Cleaning of CdS and ZnS Nanoparticles: Superiority to Annealing as a Postsynthetic Treatment of Functional Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 15427-15431 Phosphate Doping into Monoclinic BiVO4 for Enhanced Photoelectrochemical Water Oxidation Activity. Angewandte Chemie, 2012, 124, 3201-3205 Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angewandte Chemie, 2012, 124, 3201-3205 A Method for Modifying the Crystalline Nature and Texture of ZnO Nanostructure Surfaces. Crystal oxidity. Angewandte Chemie - International Edition, 2012, 51, 3147-51 A Method for Modifying the Crystalline Nature and Texture of ZnO Nanostructure Surfaces. Crystal oxidity. Angewandte Chemie - International Edition, 2012, 51, 3147-51 A Method for Modifying the Crystalline Nature and Texture of ZnO Nanostructure Surfaces. Crystal oxidity in Angewandte Chemie - International Edition, 2012, 51, 3147-51 A Method for Modifying the Crystalline Nature and Texture of ZnO Nanostructure Surfaces. Crystal Activities. Langmuir, 2011, 17, 371-37 A Method for Modifying the Crystalline Nature and Texture of ZnO Nanostructure Surfaces. Crystal Carbon-doped ZnO nanostructures synthesis of 3D ZnO superstructures. Langmuir, 2010, 26, 14255-62 A Room tem

5	Large-Scale Fabrication of Sub-20-nm-Diameter ZnO Nanorod Arrays at Room Temperature and Their Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 10452-10458	3.8	44
4	Precursor effects of citric acid and citrates on ZnO crystal formation. <i>Langmuir</i> , 2009 , 25, 3825-31	4	134
3	Simultaneous Synthesis of Al-Doped ZnO Nanoneedles and Zinc Aluminum Hydroxides through Use of a Seed Layer. <i>Crystal Growth and Design</i> , 2008 , 8, 4553-4558	3.5	40
2	Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 5975-5980	6.7	146
1	Selective, Stable, Bias-Free, and Efficient Solar Hydrogen Peroxide Production on Inorganic Layered Materials. <i>Advanced Functional Materials</i> , 2110412	15.6	2