Yingping Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7779769/publications.pdf Version: 2024-02-01

		53794	24982
148	12,730	45	109
papers	citations	h-index	g-index
153	153	153	7143
all docs	docs citations	times ranked	citing authors

VINCEINC ZOLL

#	Article	IF	CITATIONS
1	Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 2019, 3, 1140-1151.	24.0	4,052
2	High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nature Photonics, 2020, 14, 300-305.	31.4	713
3	Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nature Communications, 2014, 5, 4206.	12.8	470
4	Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nature Communications, 2020, 11, 3943.	12.8	458
5	Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Communications, 2019, 10, 570.	12.8	377
6	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	8.2	349
7	Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy and Environmental Science, 2020, 13, 2459-2466.	30.8	324
8	Fused Benzothiadiazole: A Building Block for nâ€Type Organic Acceptor to Achieve Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1807577.	21.0	297
9	Barrierless Free Charge Generation in the Highâ€Performance PM6:Y6 Bulk Heterojunction Nonâ€Fullerene Solar Cell. Advanced Materials, 2020, 32, e1906763.	21.0	258
10	A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6, 799-806.	39.5	235
11	A-DA′D-A non-fullerene acceptors for high-performance organic solar cells. Science China Chemistry, 2020, 63, 1352-1366.	8.2	226
12	Efficient All-Polymer Solar Cells based on a New Polymer Acceptor Achieving 10.3% Power Conversion Efficiency. ACS Energy Letters, 2019, 4, 417-422.	17.4	196
13	Low-Bandgap Non-fullerene Acceptors Enabling High-Performance Organic Solar Cells. ACS Energy Letters, 2021, 6, 598-608.	17.4	175
14	Rational Tuning of Molecular Interaction and Energy Level Alignment Enables Highâ€₽erformance Organic Photovoltaics. Advanced Materials, 2019, 31, e1904215.	21.0	162
15	Thieno[3,2- <i>b</i>]pyrrolo-Fused Pentacyclic Benzotriazole-Based Acceptor for Efficient Organic Photovoltaics. ACS Applied Materials & amp; Interfaces, 2017, 9, 31985-31992.	8.0	161
16	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	8.2	157
17	Asymmetric Alkoxy and Alkyl Substitution on Nonfullerene Acceptors Enabling Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003141.	19.5	144
18	Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. Journal of Materials Chemistry A, 2019, 7, 7843-7851.	10.3	130

#	Article	IF	CITATIONS
19	Solution-processable n-doped graphene-containing cathode interfacial materials for high-performance organic solar cells. Energy and Environmental Science, 2019, 12, 3400-3411.	30.8	129
20	Fluorination Enhances NIRâ€II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie - International Edition, 2020, 59, 21049-21057.	13.8	108
21	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 2019, 7, 25088-25101.	10.3	107
22	Development of quinoxaline based polymers for photovoltaic applications. Journal of Materials Chemistry C, 2017, 5, 1858-1879.	5.5	103
23	Achieving over 10% efficiency in a new acceptor ITTC and its blends with hexafluoroquinoxaline based polymers. Journal of Materials Chemistry A, 2017, 5, 11286-11293.	10.3	102
24	Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]difuran-Based Donor–Acceptor Copolymers for Polymer Solar Cells. Macromolecules, 2012, 45, 6898-6905.	4.8	101
25	Copolymers from benzodithiophene and benzotriazole: synthesis and photovoltaic applications. Polymer Chemistry, 2010, 1, 1441.	3.9	92
26	Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Science China Chemistry, 2020, 63, 1159-1168.	8.2	92
27	Extraordinarily long diffusion length in PM6:Y6 organic solar cells. Journal of Materials Chemistry A, 2020, 8, 7854-7860.	10.3	74
28	High-Performance Ternary Organic Solar Cells with Controllable Morphology via Sequential Layer-by-Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 13077-13086.	8.0	69
29	Low bandgap isoindigo-based copolymers: design, synthesis and photovoltaic applications. Polymer Chemistry, 2011, 2, 1156-1162.	3.9	66
30	Small-Molecule Electron Acceptors for Efficient Non-fullerene Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 414.	3.6	62
31	Performance improvement of polymer solar cells by using a solvent-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) buffer layer. Applied Physics Letters, 2011, 98, .	3.3	61
32	A new benzo[1,2-b:4,5-b′]difuran-based copolymer for efficient polymer solar cells. Journal of Materials Chemistry, 2012, 22, 17724.	6.7	61
33	Optimizing the conjugated side chains of quinoxaline based polymers for nonfullerene solar cells with 10.5% efficiency. Journal of Materials Chemistry A, 2018, 6, 3074-3083.	10.3	61
34	Asymmetric Non-Fullerene Small-Molecule Acceptors toward High-Performance Organic Solar Cells. ACS Central Science, 2021, 7, 1787-1797.	11.3	58
35	Semitransparent solar cells with over 12% efficiency based on a new low bandgap fluorinated small molecule acceptor. Materials Chemistry Frontiers, 2019, 3, 2483-2490.	5.9	55
36	New alkylthienyl substituted benzo[1,2-b:4,5-b′]dithiophene-based polymers for high performance solar cells. Journal of Materials Chemistry A, 2013, 1, 570-577.	10.3	54

#	Article	IF	CITATIONS
37	Large-scale roll-to-roll printed, flexible and stable organic bulk heterojunction photodetector. Npj Flexible Electronics, 2018, 2, .	10.7	54
38	New alkoxylphenyl substituted benzo[1,2-b:4,5-b′] dithiophene-based polymers: synthesis and application in solar cells. Journal of Materials Chemistry A, 2013, 1, 10639.	10.3	53
39	A-ï€-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17%. Science China Chemistry, 2022, 65, 1374-1382.	8.2	53
40	Indene Addition of [6,6]-Phenyl-C ₆₁ -butyric Acid Methyl Ester for High-Performance Acceptor in Polymer Solar Cells. Journal of Physical Chemistry C, 2011, 115, 4340-4344.	3.1	52
41	A New Dithienylbenzotriazoleâ€Based Poly(2,7â€carbazole) for Efficient Photovoltaics. Macromolecular Chemistry and Physics, 2010, 211, 2026-2033.	2.2	49
42	Putting Order into PM6:Y6 Solar Cells to Reduce the Langevin Recombination in 400 nm Thick Junction. Solar Rrl, 2020, 4, 2000498.	5.8	49
43	A Highâ€Mobility Lowâ€Bandgap Copolymer for Efficient Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 2555-2561.	2.2	48
44	Potassium-Presenting Zinc Oxide Surfaces Induce Vertical Phase Separation in Fullerene-Free Organic Photovoltaics. Nano Letters, 2020, 20, 715-721.	9.1	48
45	Hexafluoroquinoxaline Based Polymer for Nonfullerene Solar Cells Reaching 9.4% Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 18816-18825.	8.0	47
46	A Medium Bandgap D–A Copolymer Based on 4-Alkyl-3,5-difluorophenyl Substituted Quinoxaline Unit for High Performance Solar Cells. Macromolecules, 2018, 51, 2838-2846.	4.8	47
47	Realizing Efficient Charge/Energy Transfer and Charge Extraction in Fullerene-Free Organic Photovoltaics via a Versatile Third Component. Nano Letters, 2019, 19, 5053-5061.	9.1	47
48	5,6-Bis(decyloxy)-2,1,3-benzooxadiazole-Based Polymers with Different Electron Donors for Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2011, 115, 16211-16219.	3.1	46
49	Quinoxaline-Based Semiconducting Polymer Dots for in Vivo NIR-II Fluorescence Imaging. Macromolecules, 2019, 52, 5735-5740.	4.8	46
50	Self-assembled polymeric micelles as amphiphilic particulate emulsifiers for controllable Pickering emulsions. Materials Chemistry Frontiers, 2019, 3, 356-364.	5.9	45
51	Borane Incorporation in a Non-Fullerene Acceptor To Tune Steric and Electronic Properties and Improve Organic Solar Cell Performance. ACS Applied Energy Materials, 2019, 2, 1229-1240.	5.1	43
52	Alkoxy substitution on IDT-Series and Y-Series non-fullerene acceptors yielding highly efficient organic solar cells. Journal of Materials Chemistry A, 2021, 9, 7481-7490.	10.3	42
53	Y6 and its derivatives: molecular design and physical mechanism. National Science Review, 2021, 8, nwab121.	9.5	40
54	A new two-dimensional donor/acceptor copolymer based on 4,8-bis(2′-ethylhexylthiophene)thieno[2,3-f]benzofuran for high-performance polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 5651.	5.5	38

#	Article	IF	CITATIONS
55	Plasmonic micro-beads for fluorescence enhanced, multiplexed protein detection with flow cytometry. Chemical Science, 2014, 5, 4070-4075.	7.4	38
56	Burn-In Degradation Mechanism Identified for Small Molecular Acceptor-Based High-Efficiency Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 27433-27442.	8.0	38
57	An asymmetric small molecule acceptor for organic solar cells with a short circuit current density over 24 mA cm ^{â^'2} . Journal of Materials Chemistry A, 2020, 8, 15984-15991.	10.3	37
58	A disorder-free conformation boosts phonon and charge transfer in an electron-deficient-core-based non-fullerene acceptor. Journal of Materials Chemistry A, 2020, 8, 8566-8574.	10.3	37
59	Synthesis and characterization of VO2(B)/graphene nanocomposite for supercapacitors. Journal of Materials Science: Materials in Electronics, 2015, 26, 4226-4233.	2.2	36
60	Effect of Fluorine Substitution on Photovoltaic Properties of Alkoxyphenyl Substituted Benzo[1,2-b:4,5-bâ€2]dithiophene-Based Small Molecules. ACS Applied Materials & Interfaces, 2015, 7, 25237-25246.	8.0	36
61	A solution-processable D–A–D small molecule based on isoindigo for organic solar cells. Journal of Materials Science, 2013, 48, 1014-1020.	3.7	35
62	Photovoltaic performance of long-chain poly(triphenylamine-phenothiazine) dyes with a tunable Ï€-bridge for dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 14217-14227.	10.3	35
63	A-DA′D-A Structured Organic Phototheranostics for NIR-II Fluorescence/Photoacoustic Imaging-Guided Photothermal and Photodynamic Synergistic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 18043-18052.	8.0	35
64	Synthesis of a Perylene Diimide Dimer with Pyrrolic N–H Bonds and Nâ€Functionalized Derivatives for Organic Fieldâ€Effect Transistors and Organic Solar Cells. European Journal of Organic Chemistry, 2018, 2018, 4592-4599.	2.4	34
65	Vertical Miscibility of Bulk Heterojunction Films Contributes to High Photovoltaic Performance. Advanced Materials Interfaces, 2020, 7, 2000577.	3.7	33
66	Tradeâ€Off between Exciton Dissociation and Carrier Recombination and Dielectric Properties in Y6â€Sensitized Nonfullerene Ternary Organic Solar Cells. Energy Technology, 2020, 8, 1900924.	3.8	32
67	Understanding the Role of Order in Yâ€Series Nonâ€Fullerene Solar Cells to Realize High Openâ€Circuit Voltages. Advanced Energy Materials, 2022, 12, .	19.5	32
68	Organic semiconductor memory devices based on a low-band gap polyfluorene derivative with isoindigo as electron-trapping moieties. Applied Physics Letters, 2011, 98, .	3.3	31
69	Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells. Journal of Materials Chemistry A, 2015, 3, 24349-24357.	10.3	31
70	Nonhalogenated Solvent-Processed All-Polymer Solar Cells over 7.4% Efficiency from Quinoxaline-Based Polymers. ACS Applied Materials & Interfaces, 2018, 10, 41318-41325.	8.0	30
71	Toward a Universally Compatible Nonâ€Fullerene Acceptor: Multiâ€Gram Synthesis, Solvent Vapor Annealing Optimization, and BDTâ€Based Polymer Screening. Solar Rrl, 2018, 2, 1800143.	5.8	29
72	Reduced Intrinsic Nonâ€Radiative Losses Allow Roomâ€Temperature Triplet Emission from Purely Organic Emitters. Advanced Materials, 2021, 33, e2101844.	21.0	28

#	Article	IF	CITATIONS
73	Binary non-fullerene-based polymer solar cells with a 430 nm thick active layer showing 15.39% efficiency and 73.38% fill factor. Journal of Materials Chemistry A, 2021, 9, 7129-7136.	10.3	28
74	High performance polymer solar cells based on a two dimensional conjugated polymer from alkylthienyl-substituted benzodifuran and benzothiadiazole. Polymer Chemistry, 2014, 5, 5002-5008.	3.9	27
75	A Dithienyl Benzotriazoleâ€based Polyfluorene: Synthesis and Applications in Polymer Solar Cells and Red Lightâ€Emitting Diodes. Macromolecular Chemistry and Physics, 2011, 212, 1489-1496.	2.2	26
76	Correlating the Molecular Structure of Aâ€DA′Dâ€A Type Nonâ€Fullerene Acceptors to Its Heat Transfer and Charge Transport Properties in Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2101627.	14.9	25
77	High efficiency ternary organic solar cells enabled by compatible dual-donor strategy with planar conjugated structures. Science China Chemistry, 2020, 63, 917-923.	8.2	24
78	Explaining the Fillâ€Factor and Photocurrent Losses of Nonfullerene Acceptorâ€Based Solar Cells by Probing the Longâ€Range Charge Carrier Diffusion and Drift Lengths. Advanced Energy Materials, 2021, 11, 2100804.	19.5	23
79	Compatibility between Solubility and Enhanced Crystallinity of Benzotriazole-Based Small Molecular Acceptors with Less Bulky Alkyl Chains for Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 36053-36061.	8.0	23
80	Unveiling the crystalline packing of Y6 in thin films by thermally induced "backbone-on―orientation. Journal of Materials Chemistry A, 2021, 9, 17030-17038.	10.3	22
81	Copolymers from naphtho[2,3-c]thiophene-4,9-dione derivatives and benzodithiophene: synthesis and photovoltaic applications. RSC Advances, 2012, 2, 7439.	3.6	21
82	Screening Quinoxaline-Type Donor Polymers for Roll-to-Roll Processing Compatible Organic Photovoltaics. ACS Applied Polymer Materials, 2019, 1, 2168-2176.	4.4	21
83	An Overview of Highâ€Performance Indoor Organic Photovoltaics. ChemSusChem, 2021, 14, 3428-3448.	6.8	21
84	Fluorine substituted benzothiazole-based low bandgap polymers for photovoltaic applications. RSC Advances, 2013, 3, 11869.	3.6	20
85	Realizing 8.6% Efficiency from Nonâ€Halogenated Solvent Processed Additive Free All Polymer Solar Cells with a Quinoxaline Based Polymer. Solar Rrl, 2019, 3, 1800340.	5.8	20
86	Optimising Non-Patterned MoO3/Ag/MoO3 Anode for High-Performance Semi-Transparent Organic Solar Cells towards Window Applications. Nanomaterials, 2020, 10, 1759.	4.1	20
87	New low bandgap conjugated polymer derived from 2, 7â€carbazole and 5, 6â€bis(octyloxy)â€4, 7â€di(thiophenâ€2â€yl) benzothiadiazole: Synthesis and photovoltaic properties. Journal of Applied Polymer Science, 2012, 123, 99-107.	2.6	19
88	Benzyl and fluorinated benzyl side chains for perylene diimide non-fullerene acceptors. Materials Chemistry Frontiers, 2018, 2, 2272-2276.	5.9	19
89	Quantifying Quasiâ€Fermi Level Splitting and Openâ€Circuit Voltage Losses in Highly Efficient Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2000649.	5.8	19
90	Simultaneously Enhancing the <i>J</i> _{sc} and <i>V</i> _{oc} of Ternary Organic Solar Cells by Incorporating a Medium-Band-Gap Acceptor. ACS Applied Energy Materials, 2021, 4, 3480-3486.	5.1	19

#	Article	IF	CITATIONS
91	Effects of Oxygen Position in the Alkoxy Substituents on the Photovoltaic Performance of A-DA′D-A Type Pentacyclic Small Molecule Acceptors. ACS Energy Letters, 2022, 7, 2373-2381.	17.4	19
92	A polythiophene derivative with octyl diphenylamine-vinylene side chains: synthesis and its applications in field-effect transistors and solar cells. Polymer Chemistry, 2010, 1, 678.	3.9	18
93	Enabling Efficient Tandem Organic Photovoltaics with High Fill Factor via Reduced Charge Recombination. ACS Energy Letters, 2019, 4, 1535-1540.	17.4	18
94	Highâ€Efficiency Nonfullerene Organic Solar Cells Enabled by Atomic Layer Deposited Zirconiumâ€Đoped Zinc Oxide. Solar Rrl, 2020, 4, 2000241.	5.8	18
95	Fine-tuning the energy levels and morphology <i>via</i> fluorination and thermal annealing enable high efficiency non-fullerene organic solar cells. Materials Chemistry Frontiers, 2020, 4, 3310-3318.	5.9	17
96	Precise fluorination of polymeric donors towards efficient non-fullerene organic solar cells with balanced open circuit voltage, short circuit current and fill factor. Journal of Materials Chemistry A, 2021, 9, 14752-14757.	10.3	17
97	Over 13% Efficient Organic Solar Cells Based on Lowâ€Cost Pentacyclic Aâ€DA′Dâ€Aâ€Type Nonfullerene Acceptor. Solar Rrl, 2021, 5, 2100281.	5.8	17
98	Achieving ultra-narrow bandgap non-halogenated non-fullerene acceptors <i>via</i> vinylene Ĩ€-bridges for efficient organic solar cells. Materials Advances, 2021, 2, 2132-2140.	5.4	16
99	Intrachain and Interchain Exciton–Exciton Annihilation in Donor–Acceptor Copolymers. Journal of Physical Chemistry Letters, 2021, 12, 3928-3933.	4.6	16
100	S-Shaped Double Helicene Diimides: Synthesis, Self-Assembly, and Mechanofluorochromism. Organic Letters, 2021, 23, 6183-6188.	4.6	16
101	Manipulating molecular aggregation and crystalline behavior of Aâ€ÐA'Dâ€A type acceptors by side chain engineering in organic solar cells. Aggregate, 2022, 3, .	9.9	16
102	Alkyl substituted naphtho[1, 2-b: 5, 6-b′]difuran as a new building block towards efficient polymer solar cells. RSC Advances, 2013, 3, 5366.	3.6	15
103	Interface Modification Enabled by Atomic Layer Deposited Ultraâ€Thin Titanium Oxide for Highâ€Efficiency and Semitransparent Organic Solar Cells. Solar Rrl, 2020, 4, 2000497.	5.8	15
104	Fluorination Enhances NIRâ€II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie, 2020, 132, 21235-21243.	2.0	15
105	Side-chain fluorination on the pyrido[3,4-b]pyrazine unit towards efficient photovoltaic polymers. Science China Chemistry, 2018, 61, 206-214.	8.2	13
106	Reliability of charge carrier recombination data determined with charge extraction methods. Journal of Applied Physics, 2019, 126, .	2.5	13
107	Organozinc Compounds as Effective Dielectric Modification Layers for Polymer Fieldâ€Effect Transistors. Advanced Functional Materials, 2012, 22, 4139-4148.	14.9	12
108	Synthesis and characterization of a new solution-processable star-shaped small molecule based on 5,6-bis(n-octyloxy)-2,1,3-benzoselenadiazole for organic solar cells. Journal of Materials Science, 2013, 48, 5833-5839.	3.7	12

#	Article	IF	CITATIONS
109	Two new fluorinated copolymers based on thieno[2,3-f]benzofuran for efficient polymer solar cells. RSC Advances, 2016, 6, 62923-62933.	3.6	12
110	Synthesis and photovoltaic properties of benzotriazole-based donor–acceptor copolymers. Journal of Materials Science, 2013, 48, 3177-3184.	3.7	11
111	Synthesis and characterization of conjugated polymers with main-chain donors and pendent acceptors for dye-sensitized solar cells. RSC Advances, 2013, 3, 16612.	3.6	11
112	Synthesis and photovoltaic properties of dithienyl benzotriazole based poly(phenylene vinylene)s. Journal of Applied Polymer Science, 2011, 120, 2534-2542.	2.6	10
113	Effect of fluorination on the performance of poly(thieno[2,3-f]benzofuran-co-benzothiadiazole) derivatives. RSC Advances, 2015, 5, 30145-30152.	3.6	10
114	Synthesis and Photovoltaic Investigation of 8,10-Bis(2-octyldodecyl)-8,10-dihydro-9 <i>H</i> -bisthieno[2′,3′:7,8;3″,2″:5,6] naphtho[2,3- <i>d</i> Jimidazol-9-one Based Conjugated Polymers Using a Nonfullerene Acceptor. ACS Applied Energy Materials, 2020, 3, 495-505.	5.1	10
115	Interplay between Intrachain and Interchain Excited States in Donor–Acceptor Copolymers. Journal of Physical Chemistry B, 2021, 125, 7470-7476.	2.6	10
116	Low temperature, fast synthesis and ionic conductivity of Li6MLa2Nb2O12 (M = Ca, Sr, Ba) garnets. Journal of Sol-Gel Science and Technology, 2017, 83, 660-665.	2.4	9
117	Modulation of Vertical Component Distribution for Largeâ€Area Thickâ€Film Organic Solar Cells. Solar Rrl, 2022, 6, 2100838.	5.8	9
118	A dithienyl benzotriazole-based poly(2,7-carbazole) for field-effect transistors and efficient light-emitting diodes. RSC Advances, 2011, 1, 424.	3.6	8
119	Indole-based A–DAâ€2D–A type acceptor-based organic solar cells achieve efficiency over 15 % with low energy loss. Sustainable Energy and Fuels, 2020, 4, 6203-6211.	4.9	8
120	From Generation to Extraction: A Time-Resolved Investigation of Photophysical Processes in Non-fullerene Organic Solar Cells. Journal of Physical Chemistry C, 2020, 124, 21283-21292.	3.1	8
121	A–DA′D–A Nonfullerene Acceptor Obtained by Fine-Tuning Side Chains on Pyrroles Enables PBDB-T-Based Organic Solar Cells with over 14% Efficiency. ACS Applied Energy Materials, 2020, 3, 11981-11991.	5.1	8
122	Electron-Deficient Contorted Polycyclic Aromatic Hydrocarbon via One-Pot Annulative π-Extension of Perylene Diimide. Organic Letters, 2022, 24, 2414-2419.	4.6	8
123	Conjugated copolymers of cyanosubstituted poly(<i>p</i> â€phenylene vinylene) with phenylene ethynylene and thienylene vinylene moieties: Synthesis, optical, and electrochemical properties. Journal of Applied Polymer Science, 2010, 115, 1480-1488.	2.6	7
124	Effects of thiophene units on substituted benzothiadiazole and benzodithiophene copolymers for photovoltaic applications. Journal of Applied Polymer Science, 2012, 125, 3936-3945.	2.6	7
125	Fluorescence enhancement mechanism in phosphor CaAl 12 O 19 :Mn 4 + modified with alkaliâ€chloride. Micro and Nano Letters, 2013, 8, 254-257.	1.3	7
126	New Conjugated Polymers Based on Dithieno[2,3â€e:3′,2′â€g]Isoindoleâ€7,9(8H)â€Dione Derivatives for Applications in Nonfullerene Polymer Solar Cells. Solar Rrl, 2020, 4, 1900475.	5.8	7

#	Article	IF	CITATIONS
127	Optoelectrical Switching of Nonfullerene Acceptor Y6 and BPQDâ€Based Bulk Heterojunction Memory Device through Photoelectric Effect. Advanced Electronic Materials, 2021, 7, 2001191.	5.1	7
128	Phosphorus-doped h-boron nitride as an efficient metal-free catalyst for direct dehydrogenation of ethylbenzene. Catalysis Science and Technology, 2021, 11, 5590-5597.	4.1	7
129	Electroluminescent fluoreneâ€based alternating polymers bearing triarylamine or carbazole moieties in the main chain: Synthesis and properties. Journal of Applied Polymer Science, 2009, 111, 978-987.	2.6	6
130	A wide-bandgap copolymer donor based on a phenanthridin-6(5 <i>H</i>)-one unit. Materials Chemistry Frontiers, 2019, 3, 2686-2689.	5.9	6
131	Monolayer Nanosheets Exfoliated from Cage-Based Cationic Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 1521-1529.	4.0	6
132	New cyano-substituted copolymers containing biphenylenevinylene and bithienylenevinylene units: synthesis, optical, and electrochemical properties. Journal of Materials Science, 2009, 44, 4174-4180.	3.7	5
133	New 5-Octyl-thieno[3,4-c]pyrrole-4,6-dione Based Polymers: Synthesis and Photovoltaic Properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 752-760.	2.2	5
134	Synthesis and characterization of 5,6-bis(n-octyloxy)[2,1,3] selenadiazole-based polymers for photovoltaic applications. Polymer Bulletin, 2016, 73, 385-398.	3.3	5
135	5,6â€bis(tetradecyloxy)â€2,1,3â€benzoselenadiazoleâ€based polymers for photovoltaic applications. Journal of Applied Polymer Science, 2013, 128, 3678-3686.	2.6	4
136	A new fluoropyrido[3,4-b]pyrazine based polymer for efficient photovoltaics. Polymer Chemistry, 2017, 8, 2227-2234.	3.9	4
137	Synthesis and photovoltaic properties of a non-fullerene acceptor with F-phenylalkoxy as a side chain. New Journal of Chemistry, 2018, 42, 19279-19284.	2.8	4
138	Molecular Tuning of Titanium Complexes with Controllable Work Function for Efficient Organic Photovoltaics. Journal of Physical Chemistry C, 2019, 123, 20800-20807.	3.1	4
139	Differently PEGylated Polymer Nanoparticles for Pancreatic Cancer Delivery: Using a Novel Near-Infrared Emissive and Biodegradable Polymer as the Fluorescence Tracer. Frontiers in Bioengineering and Biotechnology, 2021, 9, 699610.	4.1	4
140	Binary and Ternary Polymer Solar Cells Based on a Wide Bandgap Dâ€A Copolymer Donor and Two Nonfullerene Acceptors with Complementary Absorption Spectral. ChemSusChem, 2021, 14, 4731-4740.	6.8	3
141	<i>In situ</i> growth of phosphorus-doped boron nitride on commercial alumina as a robust catalyst for direct dehydrogenation of ethylbenzene. Catalysis Science and Technology, 2022, 12, 962-968.	4.1	3
142	Improved Space Time Yield of Chlorine over CuO/Al2O3 Co-Promoted by MnOx-CoOx in HCl Oxidation Reaction. Catalysis Letters, 2022, 152, 2239-2246.	2.6	2
143	An effective method of reconnoitering current–voltage (<i>IV</i>) characteristics of organic solar cells. Journal of Applied Physics, 2022, 132, .	2.5	2
144	A new polymer field effect transistor based on fluorene derivative with fused furan rings. Journal of Applied Polymer Science, 2018, 135, 46865.	2.6	1

#	Article	IF	CITATIONS
145	Bulk Heterojunction Optoelectrical Switching Devices Fabricated Using Nonfullerene Acceptor Y6: Aggregation-Induced Emission Polymer Blend Active Layers. Bulletin of the Chemical Society of Japan, 2021, 94, 2718-2726.	3.2	1
146	Highly Disordered Crystalline-Phase Transition of Tetrakis(1-adamantanecarboxymethyl)methane. Bulletin of the Chemical Society of Japan, 2012, 85, 481-486.	3.2	0
147	Fine‶uning the Photovoltaic Performance of Organic Solar Cells by Collaborative Optimization of Structural Isomerism and Halogen Atom. Advanced Energy and Sustainability Research, 2022, 3, 2100138.	5.8	Ο
148	A-DA'D-A type acceptor based organic solar cells. , 0, , .		0