
Sandro Froehner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7779154/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Detailing the organic matter in suspended sediments as a tool to assess the impact of land occupation in water bodies: a case of Barigui Watershed (Southern Brazil). Environmental Geochemistry and Health, 2022, , 1.	3.4	2
2	Disentangling sources and variation of organic matter in soda lakes from Nhecolândia (Pantanal,) Tj ETQq0 (2022, 114, 103718.) 0 rgBT /Ov 1.4	erlock 10 Tf 5 1
3	Proposal of a Water-Quality Index for High Andean Basins: Application to the Chumbao River, Andahuaylas, Peru. Water (Switzerland), 2022, 14, 654.	2.7	6
4	Bacia hidrográfica do rio balsas: diagnóstico fÃsico e avaliação qualitativa de áreas suscetÃveis Ã erosão. Engenharia Sanitaria E Ambiental, 2021, 26, 77-87.	0.5	1
5	Insights from Water Quality of High Andean Springs for Human Consumption in Peru. Water (Switzerland), 2021, 13, 2650.	2.7	5
6	Preparation and Chemical and Physical Characteristics of an Edible Film Based on Native Potato Starch and Nopal Mucilage. Polymers, 2021, 13, 3719.	4.5	13
7	Use of fatty acids as tracer of organic matter input associated with level of land urbanization. Environmental Science and Pollution Research, 2019, 26, 31685-31698.	5.3	9
8	Complex and protracted environmental and ecological perturbations during OAE 1a - Evidence from an expanded pelagic section from south Spain (Western Tethys). Global and Planetary Change, 2019, 183, 103030.	3.5	21
9	Water quality dynamic during rainfall episodes: integrated approach to assess diffuse pollution using automatic sampling. Environmental Monitoring and Assessment, 2019, 191, 402.	2.7	17
10	Use of n-alkanes to trace erosion and main sources of sediments in a watershed in southern Brazil. Science of the Total Environment, 2019, 682, 447-456.	8.0	19
11	Contamination assessment and prediction of 27 trace elements in sediment core from an urban lake associated with land use. Environmental Monitoring and Assessment, 2019, 191, 236.	2.7	8
12	Historical Pollution of an Urban Watershed Based in Geochemical, Geoacumulation, and EROD Activity in PLHC-1 Analyses in Sediment Cores. Archives of Environmental Contamination and Toxicology, 2019, 76, 191-205.	4.1	10
13	Tracking capybara (<i>Hydrochoerus hydrochaeris</i>) feces contribution method in aquatic environments using sterols. Environmental Toxicology and Chemistry, 2018, 37, 353-361.	4.3	2
14	Enhancing the Solubility of Polycyclic Aromatic Hydrocarbons Using Fatty Esters Present in Biodiesel. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	1
15	PAHs in Water, Sediment and Biota in an Area with Port Activities. Archives of Environmental Contamination and Toxicology, 2018, 75, 236-246.	4.1	33
16	Changes in atmospheric CO 2 levels recorded by the isotopic signature of n -alkanes from plants. Global and Planetary Change, 2017, 148, 72-78.	3.5	4
17	Critical aggregates concentration of fatty esters present in biodiesel determined by turbidity and fluorescence. Environmental Science and Pollution Research, 2017, 24, 20747-20758.	5.3	5
18	Bile acids combined with fecal sterols: a multiple biomarker approach for deciphering fecal pollution using river sediments. Journal of Soils and Sediments, 2017, 17, 861-872.	3.0	8

SANDRO FROEHNER

#	Article	IF	CITATIONS
19	Characterization of quality of sediments from ParanaguÃ _i Bay (Brazil) by combined in vitro bioassays and chemical analyses. Environmental Toxicology and Chemistry, 2017, 36, 1811-1819.	4.3	13
20	Spatial variation of metals and phosphorus in sediments of a river influenced by urbanization. Revista Brasileira De Recursos Hidricos, 2017, 22, .	0.5	3
21	Spatial and Temporal Variation of Heavy Metals Contamination in Recent Sediments from Barigui River Basin, South Brazil. Environment Pollution and Climate Change, 2017, 01, .	0.1	10
22	Evaluation of occurrence of NO3–, Coliform and atrazine in a karst aquifer, Colombo, PR. Revista Brasileira De Recursos Hidricos, 2017, 22, .	0.5	3
23	Assessment of historical fecal contamination in Curitiba, Brazil, in the last 400 years using fecal sterols. Science of the Total Environment, 2014, 493, 1065-1072.	8.0	20
24	Sedimentary record of PAHs in the Barigui River and its relation to the socioeconomic development of Curitiba, Brazil. Science of the Total Environment, 2014, 482-483, 42-52.	8.0	36
25	Use of biomarkers indices in a sediment core to evaluate potential pollution sources in a subtropical reservoir in Brazil. Chemie Der Erde, 2013, 73, 555-563.	2.0	7
26	Evaluation of potential sewage contamination by fecal sterol biomarkers adsorbed in natural biofilms. Environmental Sciences: Processes and Impacts, 2013, 15, 2080.	3.5	11
27	Natural Biofilms in Freshwater Ecosystem: Indicators of the Presence of Polycyclic Aromatic Hydrocarbons. Water, Air, and Soil Pollution, 2012, 223, 3965-3973.	2.4	12
28	Impact of coal tar pavement on polycyclic hydrocarbon distribution in lacustrine sediments from non-traditional sources. International Journal of Environmental Science and Technology, 2012, 9, 327-332.	3.5	11
29	Estimation of bioavailability of polycyclic aromatic hydrocarbons in river sediments. International Journal of Environmental Science and Technology, 2012, 9, 409-416.	3.5	10
30	Occurrence of selected estrogens in mangrove sediments. Marine Pollution Bulletin, 2012, 64, 75-79.	5.0	42
31	Avaliação do transporte do ácido 2,4-diclorofenoxiacético através de um lisÃmetro. Quimica Nova, 2012, 35, 1809-1813.	0.3	4
32	Distribution of n-alkanes in lacustrine sediments from subtropical lake in Brazil. Chemie Der Erde, 2011, 71, 171-176.	2.0	27
33	Predicting bioaccumulation of PAHs in the trophic chain in the estuary region of Paranagua, Brazil. Environmental Monitoring and Assessment, 2011, 174, 135-145.	2.7	42
34	Inputs of Domestic and Industrial Sewage in Upper Iguassu, Brazil Identified by Emerging Compounds. Water, Air, and Soil Pollution, 2011, 215, 251-259.	2.4	17
35	Removal Capacity of Caffeine, Hormones, and Bisphenol by Aerobic and Anaerobic Sewage Treatment. Water, Air, and Soil Pollution, 2011, 216, 463-471.	2.4	64
36	Occurrence of Sexual Hormones in Sediments of Mangrove in Brazil. Water, Air, and Soil Pollution, 2011, 219, 591-599.	2.4	17

#	Article	IF	CITATIONS
37	Health risk assessment of inhabitants exposed to PAHs particulate matter in air. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 817-823.	1.7	12
38	Adsorption of Dibenzothiophene by Vermiculite in Hydrophobic Form, Impregnated with Copper Ions and in Natural Form. Water, Air, and Soil Pollution, 2010, 209, 357-363.	2.4	18
39	Tracking Anthropogenic Inputs in Barigui River, Brazil Using Biomarkers. Water, Air, and Soil Pollution, 2010, 210, 33-41.	2.4	37
40	Assessment of bioaccumulation of biphenyls in the trophic chain of a coastal area of Parana, Brazil. Environmental Monitoring and Assessment, 2010, 164, 189-198.	2.7	10
41	Distribution of polycyclic aromatic hydrocarbons in marine sediments and their potential toxic effects. Environmental Monitoring and Assessment, 2010, 168, 205-213.	2.7	22
42	Sediments as a potential tool for assessment of sewage pollution in Barigüi River, Brazil. Environmental Monitoring and Assessment, 2010, 170, 261-272.	2.7	15
43	Degradation of Organochlorine Compounds Using Zero Valent Iron (ZVI) Nano Particles Impregnated in Hydrophobic Modified Bentonite. , 2010, , 251-254.		0
44	Polycyclic aromatic hydrocarbons (PAHs) in airborne particulate matter in Curitiba, Brazil and benzo(a)pyrene toxic equivalency factors (TEFs). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1347-1352.	1.7	9
45	Assessment of fecal sterols in Barigui River sediments in Curitiba, Brazil. Environmental Monitoring and Assessment, 2009, 157, 591-600.	2.7	46
46	Water Remediation by Adsorption of Phenol onto Hydrophobic Modified Clay. Water, Air, and Soil Pollution, 2009, 199, 107-113.	2.4	47
47	Water Remediation by Columns Filled with Micelle–Vermiculite Systems. Water, Air, and Soil Pollution, 2009, 202, 161-168.	2.4	5
48	Enhanced Biodegradation of Naphthalene and Anthracene by Modified Vermiculite Mixed with Soil. Water, Air, and Soil Pollution, 2009, 202, 169-177.	2.4	19
49	Characterization of Granulometric and Chemical Composition of Sediments of Barigui River Samples and their Capacity to Retain Polycyclic Aromatic Hydrocarbons. Water, Air, and Soil Pollution, 2009, 203, 381-389.	2.4	11
50	Avaliação do destino e bioacumulação de benzo(a)pireno através de simulação computacional. Quimica Nova, 2008, 31, 1089-1093.	0.3	14
51	Avaliação da composição quÃmica de sedimentos do Rio Barigüi na região metropolitana de Curitiba. Quimica Nova, 2008, 31, 2020-2026.	0.3	41
52	Transesterificação de óleos vegetais: caracterização por cromatografia em camada delgada e densidade. Quimica Nova, 2007, 30, 2016-2019.	0.3	21
53	Origin of the Sphere-to-Rod Transition in Cationic Micelles with Aromatic Counterions:  Specific Ion Hydration in the Interfacial Region Matters. Langmuir, 2005, 21, 562-568.	3.5	71
54	Effect of Alkyl Group Size on the Mechanism of Acid Hydrolyses of Benzaldehyde Acetals. Journal of Organic Chemistry, 2003, 68, 706-717.	3.2	15