David Hammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7779095/publications.pdf

Version: 2024-02-01

60 papers 5,265 citations

126858 33 h-index 50 g-index

60 all docs

60 docs citations

60 times ranked

2158 citing authors

#	Article	IF	CITATIONS
1	"Well that's how the kids feel!â€â€"Epistemic empathy as a driver of responsive teaching. Journal of Research in Science Teaching, 2022, 59, 223-251.	2.0	12
2	Disciplinary significance of social caring in postsecondary science, technology, engineering, and mathematics. Physical Review Physics Education Research, 2021, 17, .	1.4	4
3	The tension between patternâ€seeking and mechanistic reasoning in explanation construction: A case from Chinese elementary science classroom. Science Education, 2020, 104, 1071-1099.	1.8	12
4	Odd ideas about learning science: A response to Osborne. Science Education, 2019, 103, 1289-1293.	1.8	10
5	"lt's Scary but It's Also Exciting― Evidence of Meta-Affective Learning in Science. Cognition and Instruction, 2019, 37, 73-92.	1.9	32
6	Positioning as notâ€understanding: The value of showing uncertainty for engaging in science. Journal of Research in Science Teaching, 2018, 55, 573-599.	2.0	43
7	Targeting disciplinary practices in an online learning environment. Science Education, 2018, 102, 668-692.	1.8	10
8	Dataâ€based conjectures for supporting responsive teaching in engineering design with elementary teachers. Science Education, 2018, 102, 548-570.	1.8	27
9	ldiosyncratic cases and hopes for general validity: what education research might learn from ecology / Casos idiosincrásicos y expectativas de validez general: lo que la investigaciÁ³n en educación puede aprender de la ecologÃa. Infancia Y Aprendizaje, 2018, 41, 625-673.	0.5	10
10	Beyond "asking questions― Problematizing as a disciplinary activity. Journal of Research in Science Teaching, 2018, 55, 982-998.	2.0	37
11	Teaching Assistant Attention and Responsiveness to Student Reasoning in Written Work. CBE Life Sciences Education, 2018, 17, ar25.	1.1	6
12	Looking for coherence in science curriculum. Science Education, 2017, 101, 929-943.	1.8	70
13	Case study of a successful learner's epistemological framings of quantum mechanics. Physical Review Physics Education Research, 2017, 13, .	1.4	28
14	Problematizing as a scientific endeavor. Physical Review Physics Education Research, 2017, 13, .	1.4	39
15	Learning to Feel Like a Scientist. Science Education, 2016, 100, 189-220.	1.8	124
16	Elementary School Engineering for Fictional Clients in Children's Literature. Contemporary Trends and Issues in Science Education, 2016, , 263-291.	0.2	5
17	Engaging in Science: A Feeling for the Discipline. Journal of the Learning Sciences, 2016, 25, 156-202.	2.0	70
18	Stable Beginnings in Engineering Design. Journal of Pre-College Engineering Education Research, 2016, 6, .	0.3	16

#	Article	IF	CITATIONS
19	Implications of Complexity for Research on Learning Progressions. Science Education, 2015, 99, 424-431.	1.8	53
20	Discovery Learning. , 2015, , 335-336.		0
21	Confusing Claims for Data: A Critique of Common Practices for Presenting Qualitative Research on Learning. Journal of the Learning Sciences, 2014, 23, 37-46.	2.0	112
22	Examining Young Students' Problem Scoping in Engineering Design. Journal of Pre-College Engineering Education Research, 2014, 4, .	0.3	52
23	Discovery Learning. , 2013, , 1-1.		0
24	Attending and Responding to Student Thinking in Science. American Biology Teacher, 2012, 74, 158-162.	0.1	16
25	Students' Framings and Their Participation in Scientific Argumentation. , 2012, , 73-93.		19
26	Framing for scientific argumentation. Journal of Research in Science Teaching, 2012, 49, 68-94.	2.0	251
27	The missing disciplinary substance of formative assessment. Journal of Research in Science Teaching, 2011, 48, 1109-1136.	2.0	186
28	On Static and Dynamic Intuitive Ontologies. Journal of the Learning Sciences, 2011, 20, 163-168.	2.0	14
29	The Beginnings of Energy in Third Graders' Reasoning. , 2010, , .		3
30	Attending to student epistemological framing in a science classroom. Science Education, 2010, 94, 506-524.	1.8	136
31	Epistemological resources and framing: a cognitive framework for helping teachers interpret and respond to their students' epistemologies., 2010,, 409-434.		100
32	The Case for Dynamic Models of Learners' Ontologies in Physics. Journal of the Learning Sciences, 2010, 19, 285-321.	2.0	153
33	Novice Teachers' Attention to Student Thinking. Journal of Teacher Education, 2009, 60, 142-154.	2.0	222
34	Fourth Graders' Framing of an Electric Circuits Task. , 2009, , .		0
35	Making classroom assessment more accountable to scientific reasoning: A case for attending to mechanistic thinking. Science Education, 2009, 93, 875-891.	1.8	107
36	Reinventing college physics for biologists: Explicating an epistemological curriculum. American Journal of Physics, 2009, 77, 629-642.	0.3	127

#	Article	IF	CITATIONS
37	Student Behavior and Epistemological Framing: Examples from Collaborative Active-Learning Activities in Physics. Cognition and Instruction, 2009, 27, 147-174.	1.9	172
38	Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education, 2008, 92, 499-525.	1.8	269
39	The Dynamics of Students' Behaviors and Reasoning during Collaborative Physics Tutorial Sessions. , 2007, , .		6
40	Coordination of Mathematics and Physical Resources by Physics Graduate Students., 2007,,.		2
41	Multiple Epistemological Coherences in an Eighth-Grade Discussion of the Rock Cycle. Journal of the Learning Sciences, 2006, 15, 261-292.	2.0	134
42	Children's analogical reasoning in a third-grade science discussion. Science Education, 2006, 90, 316-330.	1.8	51
43	Learning and teaching science as inquiry: A case study of elementary school teachers' investigations of light. Science Education, 2005, 89, 1007-1042.	1.8	39
44	Epistemological Resources: Applying a New Epistemological Framework to Science Instruction. Educational Psychologist, 2004, 39, 57-68.	4.7	187
45	Tapping Epistemological Resources for Learning Physics. Journal of the Learning Sciences, 2003, 12, 53-90.	2.0	325
46	Practices of Inquiry in Teaching and Research. Cognition and Instruction, 2001, 19, 441-478.	1.9	26
47	On the substance of a sophisticated epistemology. Science Education, 2001, 85, 554-567.	1.8	254
48	Student resources for learning introductory physics. American Journal of Physics, 2000, 68, S52-S59.	0.3	351
49	Physics for first-graders?. Science Education, 1999, 83, 797-799.	1.8	3
50	Discovery Learning and Discovery Teaching. Cognition and Instruction, 1997, 15, 485-529.	1.9	178
51	More than misconceptions: Multiple perspectives on student knowledge and reasoning, and an appropriate role for education research. American Journal of Physics, 1996, 64, 1316-1325.	0.3	232
52	Misconceptions or P-Prims: How May Alternative Perspectives of Cognitive Structure Influence Instructional Perceptions and Intentions. Journal of the Learning Sciences, 1996, 5, 97-127.	2.0	226
53	Epistemological considerations in teaching introductory physics. Science Education, 1995, 79, 393-413.	1.8	66
54	Student Inquiry in a Physics Class Discussion. Cognition and Instruction, 1995, 13, 401-430.	1.9	52

#	Article	IF	CITATIONS
55	Students' beliefs about conceptual knowledge in introductory physics. International Journal of Science Education, 1994, 16, 385-403.	1.0	35
56	Epistemological Beliefs in Introductory Physics. Cognition and Instruction, 1994, 12, 151-183.	1.9	371
57	Dynaturtle Revisited: Learning Physics Through Collaborative Design of a Computer Model. Interactive Learning Environments, 1993, 3, 91-118.	4.4	82
58	Two approaches to learning physics. Physics Teacher, 1989, 27, 664-670.	0.2	81
59	Conceptual Change in Physics. , 0, , .		15
60	Meta-affective learning in an introductory physics course. , 0, , .		2