Ihsanullah Ihsanullah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7779078/publications.pdf

Version: 2024-02-01

147726 138417 5,177 58 31 58 citations g-index h-index papers 59 59 59 5302 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adsorption of carbon dioxide onto activated carbon prepared from lawn grass. Biomass Conversion and Biorefinery, 2022, 12, 3121-3131.	2.9	6
2	Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chemical Engineering Journal, 2022, 427, 130011.	6.6	155
3	Removal of pharmaceuticals from water using sewage sludge-derived biochar: A review. Chemosphere, 2022, 289, 133196.	4.2	84
4	Applications of MOFs as adsorbents in water purification: Progress, challenges and outlook. Current Opinion in Environmental Science and Health, 2022, 26, 100335.	2.1	28
5	Recent Developments in the Removal of Dyes from Water by Starchâ€Based Adsorbents. Chemical Record, 2022, 22, e202100312.	2.9	25
6	MXenes as next-generation materials for the photocatalytic degradation of pharmaceuticals in water. Journal of Environmental Chemical Engineering, 2022, 10, 107381.	3.3	31
7	Enhanced removal of Eriochrome Black T from water using biochar/layered double hydroxide/chitosan hybrid composite: Performance evaluation and optimization using BBD-RSM approach. Environmental Research, 2022, 209, 112861.	3.7	29
8	Harvesting biohydrogen from industrial wastewater: Production potential, pilot-scale bioreactors, commercialization status, techno-economics, and policy analysis. Journal of Cleaner Production, 2022, 340, 130809.	4.6	33
9	Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: Progress, challenges, and prospects. Separation and Purification Technology, 2022, 291, 120923.	3.9	57
10	Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process Engineering, 2022, 47, 102815.	2.6	49
11	Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes. Chemosphere, 2022, 303, 135211.	4.2	4
12	Potential of MXene-based membranes in water treatment and desalination: A critical review. Chemosphere, 2022, 303, 135234.	4.2	31
13	Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review. Analytica Chimica Acta, 2021, 1141, 246-262.	2.6	86
14	Boron nitride-based materials for water purification: Progress and outlook. Chemosphere, 2021, 263, 127970.	4.2	55
15	Sustainable wastewater treatment by biochar/layered double hydroxide composites: Progress, challenges, and outlook. Bioresource Technology, 2021, 319, 124128.	4.8	161
16	Coronavirus 2 (SARS-CoV-2) in water environments: Current status, challenges and research opportunities. Journal of Water Process Engineering, 2021, 39, 101735.	2.6	19
17	Novel sulfonated polyimide-nafion nanocomposite membranes: Fabrication, morphology and physiochemical investigations for fuel cell applications. Journal of Molecular Structure, 2021, 1231, 129940.	1.8	7
18	Hospital wastewater as a source of environmental contamination: An overview of management practices, environmental risks, and treatment processes. Journal of Water Process Engineering, 2021, 41, 101990.	2.6	73

#	Article	IF	Citations
19	Process Optimization and Modeling of Phenol Adsorption onto Sludge-Based Activated Carbon Intercalated MgAlFe Ternary Layered Double Hydroxide Composite. Molecules, 2021, 26, 4266.	1.7	7
20	Adsorption and reusability performance of M-Fe (M = Co, Cu, Zn and Ni) layered double hydroxides for the removal of hazardous Eriochrome Black T dye from different water streams. Journal of Water Process Engineering, 2021 , 42 , 102060 .	2.6	27
21	Biochar supported CuFe layered double hydroxide composite as a sustainable adsorbent for efficient removal of anionic azo dye from water. Environmental Technology and Innovation, 2021, 23, 101614.	3.0	34
22	Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies. Science of the Total Environment, 2021, 780, 146585.	3.9	132
23	Dispersive liquid–liquid microextraction of multi-elements in seawater followed by inductively coupled plasma-mass spectrometric analysis and evaluation of its greenness. Microchemical Journal, 2021, 169, 106565.	2.3	10
24	Enhanced removal of cadmium from water using bio-sorbents synthesized from branches and leaves of Capparis decidua and Ziziphus mauritiana. Environmental Technology and Innovation, 2021, 24, 101922.	3.0	17
25	Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Separation and Purification Technology, 2021, 278, 119510.	3.9	158
26	Technological challenges in the environmental applications of MXenes and future outlook. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100034.	2.9	25
27	Bioremediation of dyes: Current status and prospects. Journal of Water Process Engineering, 2020, 38, 101680.	2.6	120
28	Potential of MXenes in Water Desalination: Current Status and Perspectives. Nano-Micro Letters, 2020, 12, 72.	14.4	155
29	First Investigations on the Removal of Tungsten Species from Water Using Multi-walled Carbon Nanotubes. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	15
30	MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chemical Engineering Journal, 2020, 388, 124340.	6.6	267
31	Synthesis, Characterization and Dye Adsorption Performance of Strontium Ferrite decorated Bentonite-CoNiAl Magnetic Composite. Arabian Journal for Science and Engineering, 2020, 45, 7397-7408.	1.7	24
32	Toxicity of nanoscale metal-organic frameworks in biological systems. , 2020, , 383-395.		7
33	Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separation and Purification Technology, 2019, 209, 307-337.	3.9	243
34	Graphene-based adsorbents for the removal of toxic organic pollutants: A review. Journal of Environmental Management, 2019, 244, 370-382.	3.8	164
35	Enhanced Wet Air Oxidation of Benzene by the Addition of Phenol. Industrial & Engineering Chemistry Research, 2019, 58, 10106-10113.	1.8	3
36	Al ₂ O ₃ /MnO ₂ /CNTs nanocomposite: Synthesis, characterization and phenol adsorption. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 591-600.	1.0	17

#	Article	IF	Citations
37	Adsorption kinetics and modeling of H ₂ S by treated waste oil fly ash. Journal of the Air and Waste Management Association, 2019, 69, 246-257.	0.9	21
38	A Comparative Study on the Adsorption of Eriochrome Black T Dye from Aqueous Solution on Graphene and Acid-Modified Graphene. Arabian Journal for Science and Engineering, 2018, 43, 2167-2179.	1.7	80
39	Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: A critical review. Separation and Purification Technology, 2018, 191, 400-423.	3.9	285
40	Starch-NiFe-layered double hydroxide composites: Efficient removal of methyl orange from aqueous phase. Journal of Molecular Liquids, 2018, 249, 254-264.	2.3	123
41	Date palm ash-MgAl-layered double hydroxide composite: sustainable adsorbent for effective removal of methyl orange and eriochrome black-T from aqueous phase. Environmental Science and Pollution Research, 2018, 25, 34319-34331.	2.7	74
42	A Review of Carbon Nanomaterials' Synthesis via the Chemical Vapor Deposition (CVD) Method. Materials, 2018, 11, 822.	1.3	315
43	Novel Aluminum Oxide-Impregnated Carbon Nanotube Membrane for the Removal of Cadmium from Aqueous Solution. Materials, 2017, 10, 1144.	1.3	27
44	Adsorption of Toluene and Paraxylene from Aqueous Solution Using Pure and Iron Oxide Impregnated Carbon Nanotubes: Kinetics and Isotherms Study. Bioinorganic Chemistry and Applications, 2017, 2017, 1-11.	1.8	30
45	Enhanced Adsorption of Selenium Ions from Aqueous Solution Using Iron Oxide Impregnated Carbon Nanotubes. Bioinorganic Chemistry and Applications, 2017, 2017, 1-12.	1.8	38
46	Benzene Removal by Iron Oxide Nanoparticles Decorated Carbon Nanotubes. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	28
47	Adsorption of phenol on aluminum oxide impregnated fly ash. Desalination and Water Treatment, 2016, 57, 6801-6808.	1.0	35
48	Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 2016, 157, 141-161.	3.9	977
49	Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide. Journal of Molecular Liquids, 2016, 213, 351-359.	2.3	89
50	Fabrication and antifouling behaviour of a carbon nanotube membrane. Materials and Design, 2016, 89, 549-558.	3.3	77
51	Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination and Water Treatment, 2016, 57, 7232-7244.	1.0	150
52	Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. Journal of Molecular Liquids, 2015, 204, 255-263.	2.3	202
53	Studies on the Oxidative Removal of Sodium Thiosulfate from Aqueous Solution. Arabian Journal for Science and Engineering, 2015, 40, 289-293.	1.1	19
54	Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: Comprehensive study from synthesis to surface properties. Journal of Molecular Liquids, 2015, 206, 176-182.	2.3	78

#	Article	IF	CITATIONS
55	Novel anti-microbial membrane for desalination pretreatment: A silver nanoparticle-doped carbon nanotube membrane. Desalination, 2015, 376, 82-93.	4.0	67
56	Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol. Journal of Saudi Chemical Society, 2015, 19, 511-520.	2.4	70
57	Evaluation of micro- and nano-carbon-based adsorbents for the removal of phenol from aqueous solutions. Toxicological and Environmental Chemistry, 2015, 97, 1164-1179.	0.6	25
58	Observation of the Starting and Low Speed Behavior of Small Horizontal Axis Wind Turbine. Journal of Wind Energy, 2014, 2014, 1-8.	1.0	8