List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/777901/publications.pdf Version: 2024-02-01

		257101	301761
117	2,277	24	39
papers	citations	h-index	g-index
121	121	121	2406
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dynamic regulation of gut Clostridium-derived short-chain fatty acids. Trends in Biotechnology, 2022, 40, 266-270.	4.9	14
2	Cooperation and competition between CRISPR- and omics-based technologies in foodborne pathogens detection: a state of the art review. Current Opinion in Food Science, 2022, 44, 100813.	4.1	22
3	Selfâ€assembling protein scaffoldâ€mediated enzymes' immobilization enhances <i>in vitro</i> <scp>d</scp> â€tagatose production from lactose. , 2022, 1, 47-57.		4
4	Improvement of the enzymatic detoxification activity towards mycotoxins through structure-based engineering. Biotechnology Advances, 2022, 56, 107927.	6.0	20
5	Programming an Orthogonal Self-Assembling Protein Cascade Based on Reactive Peptide–Protein Pairs for In Vitro Enzymatic Trehalose Production. Journal of Agricultural and Food Chemistry, 2022, 70, 4690-4700.	2.4	20
6	Poultry eggshell-derived antimicrobial materials: Current status and future perspectives. Journal of Environmental Management, 2022, 314, 115096.	3.8	6
7	Functional characterization of a novel violacein biosynthesis operon from Janthinobacterium sp. B9-8. Applied Microbiology and Biotechnology, 2022, 106, 2903-2916.	1.7	4
8	Efficient production of inulo-oligosaccharides from inulin by exo- and endo-inulinase co-immobilized onto a self-assembling protein scaffold. International Journal of Biological Macromolecules, 2022, 210, 588-599.	3.6	7
9	Using nanomaterials to increase the efficiency of chemical production in microbial cell factories: A comprehensive review. Biotechnology Advances, 2022, 59, 107982.	6.0	8
10	Multifunctional fluorescent gold nanoclusters with enhanced aggregation-induced emissions (AIEs) and excellent antibacterial effect for bacterial imaging and wound healing. , 2022, 137, 212841.		8
11	Sequence, structure, and function of the Dps DNA-binding protein from Deinococcus wulumuqiensis R12. Microbial Cell Factories, 2022, 21, .	1.9	4
12	A Cruciform Petal-like (ZIF-8) with Bactericidal Activity against Foodborne Gram-Positive Bacteria for Antibacterial Food Packaging. International Journal of Molecular Sciences, 2022, 23, 7510.	1.8	12
13	Valorization of Food Processing Waste to Produce Valuable Polyphenolics. Journal of Agricultural and Food Chemistry, 2022, 70, 8855-8870.	2.4	15
14	Molecular structure features and lactic acid fermentation behaviors of water- and alkali-soluble polysaccharides from Dendrobium officinale. Journal of Food Science and Technology, 2021, 58, 532-540.	1.4	7
15	Improving the thermostability of trehalose synthase from Thermomonospora curvata by covalent cyclization using peptide tags and investigation of the underlying molecular mechanism. International Journal of Biological Macromolecules, 2021, 168, 13-21.	3.6	14
16	Draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 strain isolated from radiation-polluted soil and its pathogenic potential. Journal of Global Antimicrobial Resistance, 2021, 24, 121-123.	0.9	2
17	Comparison of different sequencing strategies for assembling chromosome-level genomes of extremophiles with variable GC content. IScience, 2021, 24, 102219.	1.9	3
18	Using MoS ₂ Nanomaterials to Generate or Remove Reactive Oxygen Species: A Review. ACS Applied Nano Materials, 2021, 4, 7523-7537.	2.4	37

#	Article	IF	CITATIONS
19	Metal-organic frameworks coupling simultaneous saccharication and fermentation for enhanced butyric acid production from rice straw under visible light by Clostridium tyrobutyricum Ctl"ack::cat1. Bioresource Technology, 2021, 332, 125117.	4.8	12
20	Study of the properties of carotenoids and key carotenoid biosynthesis genes from Deinococcus xibeiensis R13. Biotechnology and Applied Biochemistry, 2021, , .	1.4	3
21	Integrating chemical and biological catalysis for simultaneous production of polyphenolics and butyric acid from waste pomegranate peels. Science of the Total Environment, 2021, 778, 146095.	3.9	9
22	Antibacterial mechanism and transcriptome analysis of ultra-small gold nanoclusters as an alternative of harmful antibiotics against Gram-negative bacteria. Journal of Hazardous Materials, 2021, 416, 126236.	6.5	57
23	Pathway engineering of Saccharomyces cerevisiae for efficient lycopene production. Bioprocess and Biosystems Engineering, 2021, 44, 1033-1047.	1.7	5
24	Biosorption of lead ions from aqueous solution by Clostridium tyrobutyricum immobilized in macroporous Caâ€alginateâ€lignin beads. Journal of Applied Microbiology, 2021, , .	1.4	2
25	An Electrochemical Molecularly Imprinted Polymer Sensor for Rapid Î ² -Lactoglobulin Detection. Sensors, 2021, 21, 8240.	2.1	12
26	Enhanced imaging of glycan expressing cancer cells using poly(glycidyl methacrylate)-grafted silica nanospheres labeled with quantum dots. Analytica Chimica Acta, 2020, 1095, 138-145.	2.6	11
27	Design and tailoring of an artificial DNA scaffolding system for efficient lycopene synthesis using zinc-finger-guided assembly. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 209-222.	1.4	22
28	Draft Genome Sequence of a Potential Organic Phosphorus-Degrading Bacterium Brevibacterium frigoritolerans GD44, Isolated from Radioactive Soil in Xinjiang, China. Current Microbiology, 2020, 77, 2896-2903.	1.0	7
29	An Electrochemical Sensor Based on Gold-Nanocluster-Modified Graphene Screen-Printed Electrodes for the Detection of β-Lactoglobulin in Milk. Sensors, 2020, 20, 3956.	2.1	26
30	Transcriptomics and Proteomics Analyses of the Responses of Propionibacterium acidipropionici to Metabolic and Evolutionary Manipulation. Frontiers in Microbiology, 2020, 11, 1564.	1.5	3
31	Properties of Cobalt- and Nickel-Doped Zif-8 Framework Materials and Their Application in Heavy-Metal Removal from Wastewater. Nanomaterials, 2020, 10, 1636.	1.9	47
32	Genome Sequence Analysis of Clostridium tyrobutyricum, a Promising Microbial Host for Human Health and Industrial Applications. Current Microbiology, 2020, 77, 3685-3694.	1.0	9
33	Electrochemical detection of β-lactoglobulin based on a highly selective DNA aptamer and flower-like Au@BiVO4 microspheres. Analytica Chimica Acta, 2020, 1120, 1-10.	2.6	23
34	Fe3O4@chitosan Microspheres Coating as Cytoprotective Exoskeletons for the Enhanced Production of Butyric Acid With Clostridium tyrobutyricum Under Acid Stress. Frontiers in Bioengineering and Biotechnology, 2020, 8, 449.	2.0	10
35	Permeabilized TreS-Expressing <i>Bacillus subtilis</i> Cells Decorated with Glucose Isomerase and a Shell of ZIF-8 as a Reusable Biocatalyst for the Coproduction of Trehalose and Fructose. Journal of Agricultural and Food Chemistry, 2020, 68, 4464-4472.	2.4	14
36	Complete Genome Sequence of Janibacter melonis M714, a Janus-Faced Bacterium with Both Human Health Impact and Industrial Applications. Current Microbiology, 2020, 77, 1883-1889.	1.0	2

#	Article	IF	CITATIONS
37	Formulation of pH and temperature dual-responsive Pickering emulsion stabilized by chitosan-based microgel for recyclable biocatalysis. Carbohydrate Polymers, 2020, 241, 116373.	5.1	39
38	An Electrochemical Sensor for the Detection of Cu ²⁺ Based on Gold Nanoflowersâ€modifed Electrode and DNAzyme Functionalized Au@MILâ€101 (Fe). Electroanalysis, 2019, 31, 2330-2338.	1.5	14
39	Draft genome sequence of a multidrug-resistant blaOXA-69-producing Acinetobacter baumannii L13 isolated from Tarim River sample in China. Journal of Global Antimicrobial Resistance, 2019, 18, 145-147.	0.9	11
40	High-resolution colorimetric detection of lipase activity based on enzyme-controlled reshaping of gold nanorods. Analytical Methods, 2019, 11, 2286-2291.	1.3	6
41	Catcher/Tag cyclization introduces electrostatic interaction mediated protein-protein interactions to enhance the thermostability of luciferase. Process Biochemistry, 2019, 80, 64-71.	1.8	6
42	Draft genome sequence of broad-spectrum antifungal-producing Bacillus velezensis C4341 isolated from a saline-alkali soil sample in China. Journal of Global Antimicrobial Resistance, 2019, 16, 291-293.	0.9	5
43	Draft genome sequence of multidrug-resistant β-lactamase-producing Bacillus cereus S66 isolated from China. Journal of Global Antimicrobial Resistance, 2019, 17, 23-24.	0.9	11
44	The diversity and commonalities of the radiation-resistance mechanisms of Deinococcus and its up-to-date applications. AMB Express, 2019, 9, 138.	1.4	39
45	Purification and characterization of a glucose-tolerant β-glucosidase from black plum seed and its structural changes in ionic liquids. Food Chemistry, 2019, 274, 422-428.	4.2	27
46	Optimization of fermentation conditions for carotenoid production in the radiation-resistant strain Deinococcus xibeiensis R13. Bioprocess and Biosystems Engineering, 2019, 42, 631-642.	1.7	7
47	Complete genome sequence of Janthinobacterium sp. B9-8, a violacein-producing bacterium isolated from low-temperature sewage. Microbial Pathogenesis, 2019, 128, 178-183.	1.3	11
48	Effects of dispersible MoS2 nanosheets and Nano-silver coexistence on the metabolome of yeast. Chemosphere, 2018, 198, 216-225.	4.2	17
49	Efficient degradation of lignin in raw wood via pretreatment with heteropoly acids in Î ³ -valerolactone/water. Bioresource Technology, 2018, 261, 70-75.	4.8	30
50	Programming Integrative Extracellular and Intracellular Biocatalysis for Rapid, Robust, and Recyclable Synthesis of Trehalose. ACS Catalysis, 2018, 8, 1837-1842.	5.5	35
51	In-Situ Biocatalytic Production of Trehalose with Autoinduction Expression of Trehalose Synthase. Journal of Agricultural and Food Chemistry, 2018, 66, 1444-1451.	2.4	10
52	Efficient production of lycopene by engineered E. coli strains harboring different types of plasmids. Bioprocess and Biosystems Engineering, 2018, 41, 489-499.	1.7	33
53	Growth and Cell Properties of Modified Lactobacillus plantarum CICC21001 with Supplementing C18-FFAs to Growth Medium in vitro. Current Microbiology, 2018, 75, 1133-1141.	1.0	1
54	How nitrogen sources influence Mortierella alpina aging: From the lipid droplet proteome to the whole-cell proteome and metabolome. Journal of Proteomics, 2018, 179, 140-149.	1.2	18

#	Article	IF	CITATIONS
55	Improvement of Lead Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of Transcription Regulator SPT3. Applied Biochemistry and Biotechnology, 2018, 184, 155-167.	1.4	3
56	Butyric acid: Applications and recent advances in its bioproduction. Biotechnology Advances, 2018, 36, 2101-2117.	6.0	100
57	Pretreatment with γ-Valerolactone/[Mmim]DMP and Enzymatic Hydrolysis on Corncob and Its Application in Immobilized Butyric Acid Fermentation. Journal of Agricultural and Food Chemistry, 2018, 66, 11709-11717.	2.4	14
58	Effect of Bulk MoS2 on the Metabolic Profile of Yeast. Journal of Nanoscience and Nanotechnology, 2018, 18, 3901-3907.	0.9	2
59	Enhancing the stability of trehalose synthase via SpyTag/SpyCatcher cyclization to improve its performance in industrial biocatalysts. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1473-1479.	0.6	12
60	An electrochemical biosensor for the detection of Pb2+ based on G-quadruplex DNA and gold nanoparticles. Analytical and Bioanalytical Chemistry, 2018, 410, 5879-5887.	1.9	24
61	Draft genome sequence of Bacillus sp. M13(2017), a multidrug-resistant subclass B1 blaNDM-producing, spore-forming bacterium isolated from China. Journal of Global Antimicrobial Resistance, 2018, 14, 152-153.	0.9	2
62	Analysis and expression of the carotenoid biosynthesis genes from Deinococcus wulumuqiensis R12 in engineered Escherichia coli. AMB Express, 2018, 8, 94.	1.4	19
63	Programming a Biofilm-Mediated Multienzyme-Assembly-Cascade System for the Biocatalytic Production of Glucosamine from Chitin. Journal of Agricultural and Food Chemistry, 2018, 66, 8061-8068.	2.4	33
64	A Simple α-Ketoglutarate Electrochemical Biosensor Based on Reduced MoS2 Nanoparticle-Gold Nanoparticle Nanocomposite. Journal of Nanoscience and Nanotechnology, 2018, 18, 576-582.	0.9	2
65	The Role of Lipid Droplets in Mortierella alpina Aging Revealed by Integrative Subcellular and Whole-Cell Proteome Analysis. Scientific Reports, 2017, 7, 43896.	1.6	19
66	Insights from the complete genome sequence of <i>Clostridium tyrobutyricum</i> provide a platform for biotechnological and industrial applications. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1245-1260.	1.4	16
67	Effects of aeration on metabolic profiles of Mortierella alpina during the production of arachidonic acid. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1225-1235.	1.4	10
68	Phase behaviors and self-assembled properties of ion-pairing amphiphile molecules formed by medium-chain fatty acids and <scp>l</scp> -arginine triggered by external conditions. New Journal of Chemistry, 2017, 41, 14486-14497.	1.4	7
69	Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene. Scientific Reports, 2017, 7, 7940.	1.6	16
70	Development of an Improved Method to Determine Saturated Aliphatic Aldehydes in Docosahexaenoic Acidâ€Rich Oil: A Supplement to <i>p</i> â€Anisidine Value. European Journal of Lipid Science and Technology, 2017, 119, 1700243.	1.0	10
71	Tailoring the Oxidative Stress Tolerance of <i>Clostridium tyrobutyricum</i> CCTCC W428 by Introducing Trehalose Biosynthetic Capability. Journal of Agricultural and Food Chemistry, 2017, 65, 8892-8901.	2.4	14
72	Investigation on the self-assembled behaviors of C ₁₈ unsaturated fatty acids in arginine aqueous solution. RSC Advances, 2017, 7, 41561-41572.	1.7	22

#	Article	IF	CITATIONS
73	Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria. Journal of Agricultural and Food Chemistry, 2017, 65, 6674-6681.	2.4	15
74	Dispersible MoS ₂ Nanosheets Activated TGF-β/Smad Pathway and Perturbed the Metabolome of Human Dermal Fibroblasts. ACS Biomaterials Science and Engineering, 2017, 3, 3261-3272.	2.6	19
75	Protective role of trehalose during radiation and heavy metal stress in Aureobasidium subglaciale F134. Scientific Reports, 2017, 7, 17586.	1.6	27
76	Draft Genome Sequence of <i>Myroides</i> sp. N17-2, a Multidrug-Resistant Bacterium Isolated from Radiation-Polluted Soils. Genome Announcements, 2017, 5, .	0.8	2
77	Enzymatic Synthesis of Sorboyl-Polydatin Prodrug in Biomass-Derived 2-Methyltetrahydrofuran and Antiradical Activity of the Unsaturated Acylated Derivatives. BioMed Research International, 2016, 2016, 1-7.	0.9	2
78	Investigating the Influence of MoS2 Nanosheets on E. coli from Metabolomics Level. PLoS ONE, 2016, 11, e0167245.	1.1	42
79	A high-throughput screening method for identifying lycopene-overproducing E. coli strain based on an antioxidant capacity assay. Biochemical Engineering Journal, 2016, 112, 277-284.	1.8	18
80	Integrated Biocatalytic Process for Trehalose Production and Separation from Maltose. Industrial & Engineering Chemistry Research, 2016, 55, 10566-10575.	1.8	23
81	Mechanism of Arachidonic Acid Accumulation during Aging in <i>Mortierella alpina</i> : A Large-Scale Label-Free Comparative Proteomics Study. Journal of Agricultural and Food Chemistry, 2016, 64, 9124-9134.	2.4	29
82	Transcriptome analysis of Rhizopus oryzae in response to xylose during fumaric acid production. Bioprocess and Biosystems Engineering, 2016, 39, 1267-1280.	1.7	10
83	Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs. Journal of Biotechnology, 2016, 224, 55-63.	1.9	27
84	Counteraction of Trehalose on N, N-Dimethylformamide-Induced Candida rugosa Lipase Denaturation: Spectroscopic Insight and Molecular Dynamic Simulation. PLoS ONE, 2016, 11, e0152275.	1.1	8
85	SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS ONE, 2016, 11, e0162318.	1.1	55
86	Draft genome sequence of Paenibacillus dauci sp. nov., a carrot-associated endophytic actinobacteria. Genomics Data, 2015, 5, 241-253.	1.3	9
87	Optimization of bioconversion process for trehalose production from enzymatic hydrolysis of kudzu root starch using a visualization method. Bioresources and Bioprocessing, 2015, 2, .	2.0	6
88	Novel double-walled microspheres based on chitosan, sodium cellulose sulfate and sodium tripolyphosphate: Preparation, characterization and in vitro release study. Korean Journal of Chemical Engineering, 2015, 32, 369-372.	1.2	16
89	Draft genome sequence of Paenibacillus algorifonticola sp. nov., an antimicrobial-producing strain. Genomics Data, 2015, 5, 302-308.	1.3	2
90	Study of Metabolic Profile of Rhizopus oryzae to Enhance Fumaric Acid Production Under Low pH Condition. Applied Biochemistry and Biotechnology, 2015, 177, 1508-1519.	1.4	6

#	Article	IF	CITATIONS
91	Putative carotenoid genes expressed under the regulation of Shine–Dalgarno regions in Escherichia coli for efficient lycopene production. Biotechnology Letters, 2015, 37, 2303-2310.	1.1	21
92	Genome Sequence of Paenibacillus wulumuqiensis sp. nov., a Bioflocculant-Producing Species. Genome Announcements, 2015, 3, .	0.8	3
93	Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and the role of trehalose synthesis in acid tolerance. Green Chemistry, 2015, 17, 250-259.	4.6	69
94	Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. Journal of Colloid and Interface Science, 2014, 417, 210-216.	5.0	53
95	An example of enzymatic promiscuity: the Baylis–Hillman reaction catalyzed by a biotin esterase (BioH) from Escherichia coli. Biotechnology Letters, 2014, 36, 99-103.	1.1	24
96	Enzymatic promiscuity: Escherichia coli BioH esterase-catalysed Aldol reaction and Knoevenagel reaction. Chemical Research in Chinese Universities, 2014, 30, 289-292.	1.3	11
97	Enzymatic promiscuity: "Amano―lipase AS-catalysed synthesis of naphthopyran derivatives in anhydrous media. Chemical Research in Chinese Universities, 2014, 30, 396-399.	1.3	2
98	Polydiacetylene-Based High-Throughput Screen for Surfactin Producing Strains of Bacillus subtilis. PLoS ONE, 2014, 9, e88207.	1.1	19
99	Optimization of enzymatic synthesis of L-ascorbyl palmitate by solvent engineering and statistical experimental designs. Biotechnology and Bioprocess Engineering, 2013, 18, 350-357.	1.4	10
100	Synthesis of vitamin E succinate from Candida rugosa lipase in organic medium. Chemical Research in Chinese Universities, 2013, 29, 223-226.	1.3	14
101	Bioproduction of hydrogen by simultaneous saccharification and fermentation of cassava starch with 2-deoxyglucose-resistant mutant strains of Clostridium tyrobutyricum. International Journal of Hydrogen Energy, 2013, 38, 6349-6356.	3.8	16
102	Synthesis of vitamin E succinate by interfacial activated Candida rugosa lipase encapsulated in sol-gel materials. Chinese Journal of Catalysis, 2013, 34, 1608-1616.	6.9	17
103	Comparison of metabolic pathway for hydrogen production in wild-type and mutant Clostridium tyrobutyricum strain based on metabolic flux analysis. International Journal of Hydrogen Energy, 2013, 38, 2176-2184.	3.8	16
104	Genome Sequence of Thermus thermophilus ATCC 33923, a Thermostable Trehalose-Producing Strain. Genome Announcements, 2013, 1, .	0.8	6
105	Genome Sequence of a Gamma- and UV-Ray-Resistant Strain, Deinococcus wulumuqiensis R12. Genome Announcements, 2013, 1, .	0.8	13
106	Draft Genome Sequence of Deinococcus xibeiensis R13, a New Carotenoid-Producing Strain. Genome Announcements, 2013, 1, .	0.8	9
107	Genome Sequence of Clostridium tyrobutyricum ATCC 25755, a Butyric Acid-Overproducing Strain. Genome Announcements, 2013, 1, .	0.8	27
108	Identification and Characterization of a Novel Trehalose Synthase Gene Derived from Saline-Alkali Soil Metagenomes. PLoS ONE, 2013, 8, e77437.	1.1	33

#	Article	IF	CITATIONS
109	Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in <i>Clostridium tyrobutyricum</i> . Biotechnology and Bioengineering, 2012, 109, 708-718.	1.7	33
110	Control and Optimization of Clostridium tyrobutyricum ATCC 25755 Adhesion into Fibrous Matrix in a Fibrous Bed Bioreactor. Applied Biochemistry and Biotechnology, 2011, 165, 98-108.	1.4	23
111	Effects of three main sugars in cane molasses on the production of butyric acid with Clostridium tyrobutyricum. Korean Journal of Chemical Engineering, 2011, 28, 2312-2315.	1.2	16
112	Enhanced butyric acid tolerance and bioproduction by <i>Clostridium tyrobutyricum</i> immobilized in a fibrous bed bioreactor. Biotechnology and Bioengineering, 2011, 108, 31-40.	1.7	126
113	Production of Butyric Acid from Glucose and Xylose with Immobilized Cells of Clostridium tyrobutyricum in a Fibrous-bed Bioreactor. Applied Biochemistry and Biotechnology, 2010, 160, 350-359.	1.4	69
114	Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresource Technology, 2009, 100, 3403-3409.	4.8	174
115	Phosphoenolpyruvate-dependent phosphorylation of sucrose by Clostridium tyrobutyricum ZJU 8235: Evidence for the phosphotransferase transport system. Bioresource Technology, 2009, 101, 304-9.	4.8	21
116	Extractive fermentation for fumaric acid production by <i>Rhizopus oryzae</i> . Separation Science and Technology, 0, , 1-9.	1.3	5
117	Functional Characterization of Clostridium tyrobutyricum L319: A Promising Next-Generation Probiotic for Short-Chain Fatty Acid Production. Frontiers in Microbiology, 0, 13, .	1.5	5