Jiaqiang Q Yan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/777847/jiaqiang-q-yan-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

260 17,554 60 128 g-index

284 21,405 8 6.69 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
260	The Impact of Structural Distortions on the Magnetism of Double Perovskites Containing 5d1 Transition-Metal Ions. <i>Chemistry of Materials</i> , 2022 , 34, 1098-1109	9.6	O
259	Electric control of a canted-antiferromagnetic Chern insulator <i>Nature Communications</i> , 2022 , 13, 1668	17.4	4
258	Vapor transport growth of MnBi2Te4 and related compounds. <i>Journal of Alloys and Compounds</i> , 2022 , 906, 164327	5.7	1
257	Light-induced ferromagnetism in moir superlattices <i>Nature</i> , 2022 , 604, 468-473	50.4	5
256	Topological surface currents accessed through reversible hydrogenation of the three-dimensional bulk <i>Nature Communications</i> , 2022 , 13, 2308	17.4	О
255	Magnons and magnetic fluctuations in atomically thin MnBiTe <i>Nature Communications</i> , 2022 , 13, 2527	17.4	1
254	Quasi-two-dimensional ferromagnetism and anisotropic interlayer couplings in the magnetic topological insulator MnBi2Te4. <i>Physical Review B</i> , 2021 , 104,	3.3	4
253	Magnetostriction of ⊞-RuCl3 Flakes in the Zigzag Phase. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 2568	} z. 8569	9 4
252	Intertwined Topological and Magnetic Orders in Atomically Thin Chern Insulator MnBiTe. <i>Nano Letters</i> , 2021 , 21, 2544-2550	11.5	26
251	Superconductivity in type-II Weyl-semimetal WTe2 induced by a normal metal contact. <i>Journal of Applied Physics</i> , 2021 , 129, 113903	2.5	5
250	Tuning the flat bands of the kagome metal CoSn with Fe, In, or Ni doping. <i>Physical Review Materials</i> , 2021 , 5,	3.2	2
249	Direct visualization of anionic electrons in an electride reveals inhomogeneities. <i>Science Advances</i> , 2021 , 7,	14.3	7
248	Direct evidence of ferromagnetism in MnSb2Te4. <i>Physical Review B</i> , 2021 , 103,	3.3	8
247	Thermopower across the phase diagram of the cuprate La1.6\(\mathbb{N}\) Nd0.4SrxCuO4: Signatures of the pseudogap and charge density wave phases. <i>Physical Review B</i> , 2021 , 103,	3.3	7
246	Induced anomalous Hall effect of massive Dirac fermions in ZrTe5 and HfTe5 thin flakes. <i>Physical Review B</i> , 2021 , 103,	3.3	4
245	Field-induced intermediate ordered phase and anisotropic interlayer interactions in $\exists \mathbf{R}$ uCl3. <i>Physical Review B</i> , 2021 , 103,	3.3	6
244	Defect-driven ferrimagnetism and hidden magnetization in MnBi2Te4. <i>Physical Review B</i> , 2021 , 103,	3.3	12

243	Quantum oscillations in the field-induced ferromagnetic state of MnBi2\(\mathbb{B}\)SbxTe4. <i>Physical Review B</i> , 2021 , 103,	3.3	3
242	Oscillations of the thermal conductivity in the spin-liquid state of ⊞-RuCl3. <i>Nature Physics</i> , 2021 , 17, 915	5-969	14
241	Site Mixing for Engineering Magnetic Topological Insulators. <i>Physical Review X</i> , 2021 , 11,	9.1	14
240	Accumulation-Type Ohmic van der Waals Contacts to Nearly Intrinsic WSe2 Nanosheet-Based Channels: Implications for Field-Effect Transistors. <i>ACS Applied Nano Materials</i> , 2021 , 4, 5598-5610	5.6	О
239	Revealing the Chemical Bonding in Adatom Arrays via Machine Learning of Hyperspectral Scanning Tunneling Spectroscopy Data. <i>ACS Nano</i> , 2021 ,	16.7	4
238	Bayesian Learning of Adatom Interactions from Atomically Resolved Imaging Data. <i>ACS Nano</i> , 2021 , 15, 9649-9657	16.7	2
237	In-situ observation of the in-plane field induced nucleation of skyrmion using Lorentz-TEM. <i>Microscopy and Microanalysis</i> , 2021 , 27, 380-381	0.5	
236	Electron-Phonon and Spin-Lattice Coupling in Atomically Thin Layers of MnBiTe. <i>Nano Letters</i> , 2021 , 21, 6139-6145	11.5	5
235	Tuning Fermi Levels in Intrinsic Antiferromagnetic Topological Insulators MnBi2Te4 and MnBi4Te7 by Defect Engineering and Chemical Doping. <i>Advanced Functional Materials</i> , 2021 , 31, 2006516	15.6	26
234	Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. <i>Nature Communications</i> , 2021 , 12, 871	17.4	10
233	Low-Temperature 2D/2D Ohmic Contacts in WSe Field-Effect Transistors as a Platform for the 2D Metal-Insulator Transition. <i>ACS Applied Materials & Acs Accordance & Accordanc</i>	9.5	5
232	Evolution of magnetic interactions in Sb-substituted MnBi2Te4. <i>Physical Review B</i> , 2021 , 104,	3.3	5
231	Stimulated Nucleation of Skyrmions in a Centrosymmetric Magnet. ACS Nano, 2021,	16.7	2
230	Moir[trions in MoSe/WSe heterobilayers. <i>Nature Nanotechnology</i> , 2021 , 16, 1208-1213	28.7	13
229	Direct measurement of ferroelectric polarization in a tunable semimetal. <i>Nature Communications</i> , 2021 , 12, 5298	17.4	6
228	Unusual Exchange Couplings and Intermediate Temperature Weyl State in Co_{3}Sn_{2}S_{2}. <i>Physical Review Letters</i> , 2021 , 127, 117201	7.4	3
227	One-Dimensional Edge Transport in Few-Layer WTe. <i>Nano Letters</i> , 2020 , 20, 4228-4233	11.5	19
226	Monolayer Semiconductor Auger Detector. <i>Nano Letters</i> , 2020 , 20, 5538-5543	11.5	2

225	Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe2. <i>Nature Physics</i> , 2020 , 16, 526-530	16.2	35
224	Crystal structure reconstruction in the surface monolayer of the quantum spin liquid candidate ⊞-RuCl3. <i>2D Materials</i> , 2020 , 7, 035004	5.9	4
223	Magnetic Imaging of Domain Walls in the Antiferromagnetic Topological Insulator MnBiTe. <i>Nano Letters</i> , 2020 , 20, 2609-2614	11.5	23
222	Valley phonons and exciton complexes in a monolayer semiconductor. <i>Nature Communications</i> , 2020 , 11, 618	17.4	55
221	Antisymmetric linear magnetoresistance and the planar Hall effect. <i>Nature Communications</i> , 2020 , 11, 216	17.4	3
220	Carbon deficiency-induced changes of structure and magnetism of Mn3SnC. <i>Journal of Materials Science</i> , 2020 , 55, 8363-8375	4.3	5
219	Thermal and magnetoelastic properties of $\exists \mathbf{R}$ uCl3 in the field-induced low-temperature states. <i>Physical Review B</i> , 2020 , 102,	3.3	8
218	A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals. <i>Physical Review Materials</i> , 2020 , 4,	3.2	39
217	Spin dynamics and a nearly continuous magnetic phase transition in an entropy-stabilized oxide antiferromagnet. <i>Physical Review Materials</i> , 2020 , 4,	3.2	6
216	Synthesis, characterization, and single-crystal growth of a high-entropy rare-earth pyrochlore oxide. <i>Physical Review Materials</i> , 2020 , 4,	3.2	3
215	Native defects in antiferromagnetic topological insulator MnBi2Te4. <i>Physical Review Materials</i> , 2020 , 4,	3.2	16
214	Surface superconductivity in the type II Weyl semimetal TaIrTe. <i>National Science Review</i> , 2020 , 7, 579-58	87 10.8	16
213	Coupling of photonic crystal cavity and interlayer exciton in heterobilayer of transition metal dichalcogenides. <i>2D Materials</i> , 2020 , 7, 015027	5.9	10
212	Intrinsic axion insulating behavior in antiferromagnetic MnBi6Te10. <i>Physical Review B</i> , 2020 , 102,	3.3	30
211	Robust A-Type Order and Spin-Flop Transition on the Surface of the Antiferromagnetic Topological Insulator MnBi_{2}Te_{4}. <i>Physical Review Letters</i> , 2020 , 125, 037201	7.4	25
210	Nature of Magnetic Excitations in the High-Field Phase of ⊞-RuCl_{3}. <i>Physical Review Letters</i> , 2020 , 125, 037202	7.4	11
209	Unconventional Hall effect induced by Berry curvature. <i>National Science Review</i> , 2020 , 7, 1879-1885	10.8	7
208	A practical guide for crystal growth of van der Waals layered materials. <i>Journal of Applied Physics</i> , 2020 , 128, 051101	2.5	17

(2019-2020)

207	Realizing gapped surface states in the magnetic topological insulator MnBi2\(\mathbb{B}\)SbxTe4. <i>Physical Review B</i> , 2020 , 102,	3.3	12
206	Coexistence of Surface Ferromagnetism and a Gapless Topological State in MnBi_{2}Te_{4}. <i>Physical Review Letters</i> , 2020 , 125, 117205	7.4	26
205	Tunable discrete scale invariance in transition-metal pentatelluride flakes. <i>Npj Quantum Materials</i> , 2020 , 5,	5	5
204	The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties. <i>APL Materials</i> , 2020 , 8, 040912	5.7	62
203	Competing Magnetic Interactions in the Antiferromagnetic Topological Insulator MnBi_{2}Te_{4}. <i>Physical Review Letters</i> , 2020 , 124, 167204	7.4	38
202	Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. <i>Physical Review B</i> , 2020 , 101,	3.3	70
201	Evidence for charge transfer and proximate magnetism in graphene $\blacksquare \mathbf{R}$ uCl3 heterostructures. <i>Physical Review B</i> , 2019 , 100,	3.3	24
2 00	Evolution of structural, magnetic, and transport properties in MnBi2\substaction SbxTe4. <i>Physical Review B</i> , 2019 , 100,	3.3	77
199	In Situ Lorentz Electron Microscopy Imaging of Skyrmions in Geometric Confined Structures. <i>Microscopy and Microanalysis</i> , 2019 , 25, 34-35	0.5	0
198	Chemical disorder and spin-liquid-like magnetism in the van der Waals layered 5d transition metal halide Os0.55Cl2. <i>Physical Review B</i> , 2019 , 99,	3.3	11
197	Linear magnetoresistance in the low-field limit in density-wave materials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 11201-11206	11.5	16
196	Magnetic adsorbents for selective removal of selenite from contaminated water. <i>Separation Science and Technology</i> , 2019 , 54, 2138-2146	2.5	8
195	Long-Range Antiferromagnetic Order in a Rocksalt High Entropy Oxide. <i>Chemistry of Materials</i> , 2019 , 31, 3705-3711	9.6	66
194	Revisiting the Kitaev material candidacy of Ir4+ double perovskite iridates. <i>Physical Review B</i> , 2019 , 99,	3.3	15
193	Log-periodic quantum magneto-oscillations and discrete-scale invariance in topological material HfTe. <i>National Science Review</i> , 2019 , 6, 914-920	10.8	10
192	The Effect of Nonuniform Pixel Responses in CCD on Quantitative Analysis. <i>Microscopy and Microanalysis</i> , 2019 , 25, 230-231	0.5	
191	Atomic-Scale Study of Intrinsic Defects Suppressing the Thermal Conductivity of Boron Arsenide. <i>Microscopy and Microanalysis</i> , 2019 , 25, 942-943	0.5	
190	Finite field regime for a quantum spin liquid in ⊞RuCl3. <i>Physical Review B</i> , 2019 , 100,	3.3	46

189	Polarization-resolved Raman spectroscopy of $\exists \mathbf{R}$ uCl3 and evidence of room-temperature two-dimensional magnetic scattering. <i>Physical Review B</i> , 2019 , 100,	3.3	9
188	Nanoscale Quantification of Jahn-Teller Distortion in LaMnO3. <i>Microscopy and Microanalysis</i> , 2019 , 25, 80-81	0.5	
187	Crystal growth and magnetic structure of MnBi2Te4. Physical Review Materials, 2019, 3,	3.2	140
186	Magnetic order in single crystals of Na3Co2SbO6 with a honeycomb arrangement of 3d7Co2+ ions. <i>Physical Review Materials</i> , 2019 , 3,	3.2	17
185	Suppression of the antiferromagnetic metallic state in the pressurized MnBi2Te4 single crystal. <i>Physical Review Materials</i> , 2019 , 3,	3.2	22
184	Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. <i>Physical Review Materials</i> , 2019 , 3,	3.2	13
183	High-pressure phase of CrSb2: A new quasi-one-dimensional itinerant magnet with competing interactions. <i>Physical Review Materials</i> , 2019 , 3,	3.2	1
182	Quantifying Jahn-Teller distortion at the nanoscale with picometer accuracy using position averaged convergent beam electron diffraction. <i>Physical Review Research</i> , 2019 , 1,	3.9	1
181	Signatures of moir@rapped valley excitons in MoSe/WSe heterobilayers. <i>Nature</i> , 2019 , 567, 66-70	50.4	486
180	Lattice distortion in the spin-orbital entangled state in RVO3 perovskites. <i>Physical Review B</i> , 2019 , 100,	3.3	3
179	Binder jet additive manufacturing method to fabricate near net shape crack-free highly dense Fe-6.5 wt.% Si soft magnets. <i>Heliyon</i> , 2019 , 5, e02804	3.6	16
178	Reorientation of antiferromagnetism in cobalt doped FeSn. <i>Physical Review B</i> , 2019 , 100,	3.3	5
177	Magnetic structure of Nd in NdFeAsO studied by x-ray resonant magnetic scattering. <i>Physical Review B</i> , 2019 , 100,	3.3	1
176	Excitations in the field-induced quantum spin liquid state of ⊞-RuCl3. <i>Npj Quantum Materials</i> , 2018 , 3,	5	160
175	The Crystal Structure and Magnetic Behavior of Quinary Osmate and Ruthenate Double Perovskites La ABBN (A = Ca, Sr; B = Co, Ni; BN Ru, Os). <i>Inorganic Chemistry</i> , 2018 , 57, 2989-3001	5.1	15
174	High-Performance WSe Phototransistors with 2D/2D Ohmic Contacts. <i>Nano Letters</i> , 2018 , 18, 2766-277	111.5	79
173	Magnetic order of NdPb single crystals. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 135801	1.8	2
172	Pseudogap temperature T* of cuprate superconductors from the Nernst effect. <i>Physical Review B</i> , 2018 , 97,	3.3	60

(2018-2018)

171	Influence of Co-doping on the Crystal Structure, Magnetocaloric Properties and Elastic Moduli of the La(Fe, Si)13 Compound. <i>Minerals, Metals and Materials Series</i> , 2018 , 181-190	0.3	1
170	Origin of the net magnetic moment in LaCoO3. <i>Physical Review B</i> , 2018 , 97,	3.3	1
169	Evidence of an Improper Displacive Phase Transition in Cd_{2}Re_{2}O_{7} via Time-Resolved Coherent Phonon Spectroscopy. <i>Physical Review Letters</i> , 2018 , 120, 047601	<i>7</i> ⋅4	16
168	Polarized neutron diffraction study in helical magnetic phases of MnP. <i>Physica B: Condensed Matter</i> , 2018 , 551, 115-117	2.8	
167	New Mechanism for Ferroelectricity in the Perovskite CaMnTiO Synthesized by Spark Plasma Sintering. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2214-2220	16.4	22
166	Ferroelectric switching of a two-dimensional metal. <i>Nature</i> , 2018 , 560, 336-339	50.4	280
165	Electronic phase separation and magnetic-field-induced phenomena in molecular multiferroic (ND4)2FeCl5ID2O. <i>Physical Review B</i> , 2018 , 98,	3.3	4
164	Single-crystal high entropy perovskite oxide epitaxial films. <i>Physical Review Materials</i> , 2018 , 2,	3.2	68
163	Type I antiferromagnetic order in Ba2LuReO6: Exploring the role of structural distortions in double perovskites containing 5d2 ions. <i>Journal of Solid State Chemistry</i> , 2018 , 258, 762-767	3.3	8
162	Real-Space Study of Charge and Orbital Ordering in Lao.6Sr2.4Mn2O7 Manganite Single Crystal. <i>Microscopy and Microanalysis</i> , 2018 , 24, 106-107	0.5	
161	Relaxation Dynamics of Zero-Field Skyrmions over a Wide Temperature Range. <i>Nano Letters</i> , 2018 , 18, 7777-7783	11.5	18
160	Field evolution of magnons in $\exists \mathbf{R}$ uCl3 by high-resolution polarized terahertz spectroscopy. <i>Physical Review B</i> , 2018 , 98,	3.3	32
159	Discovery of log-periodic oscillations in ultraquantum topological materials. <i>Science Advances</i> , 2018 , 4, eaau5096	14.3	32
158	Mn-induced Ferromagnetic Semiconducting Behavior with Linear Negative Magnetoresistance in Sr(RuMn)O Single Crystals. <i>Scientific Reports</i> , 2018 , 8, 13330	4.9	3
157	Real Space Visualization of Competing Phases in La0.6Sr2.4Mn2O7 Single Crystals. <i>Chemistry of Materials</i> , 2018 , 30, 7962-7969	9.6	5
156	Antisite Pairs Suppress the Thermal Conductivity of BAs. <i>Physical Review Letters</i> , 2018 , 121, 105901	7.4	29
155	Anisotropic susceptibilities in the honeycomb Kitaev system ⊞RuCl3. <i>Physical Review B</i> , 2018 , 98,	3.3	37
154	Evolution of Magnetic Double Helix and Quantum Criticality near a Dome of Superconductivity in CrAs. <i>Physical Review X</i> , 2018 , 8,	9.1	12

153	Bipolar Conduction as the Possible Origin of the Electronic Transition in Pentatellurides: Metallic vs Semiconducting Behavior. <i>Physical Review X</i> , 2018 , 8,	9.1	41
152	Unusual Exciton-Phonon Interactions at van der Waals Engineered Interfaces. <i>Nano Letters</i> , 2017 , 17, 1194-1199	11.5	63
151	Many-body effects in nonlinear optical responses of 2D layered semiconductors. <i>2D Materials</i> , 2017 , 4, 025024	5.9	28
150	A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal CdReO. <i>Science</i> , 2017 , 356, 295-299	33.3	76
149	Three-dimensional magnetic interactions in quasi-two-dimensional PdAsO. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 235801	1.8	1
148	Imaging exciton polariton transport in MoSe2 waveguides. <i>Nature Photonics</i> , 2017 , 11, 356-360	33.9	115
147	Neutron scattering in the proximate quantum spin liquid ⊞-RuCl. <i>Science</i> , 2017 , 356, 1055-1059	33.3	317
146	Heat capacity, resistivity, and angular dependent magnetization studies of single crystal Nd1+?Fe4B4 for ?🛮 7. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 435, 100-106	2.8	
145	Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction. <i>Nano Letters</i> , 2017 , 17, 638-6-	43 11.5	193
144	Magnetism out of antisite disorder in the J=0 compound Ba2YIrO6. <i>Physical Review B</i> , 2017 , 96,	3.3	17
143	Localized-itinerant dichotomy and unconventional magnetism in SrRuO. Scientific Reports, 2017, 7, 117	'44 .9	12
142	Destabilization of Magnetic Order in a Dilute Kitaev Spin Liquid Candidate. <i>Physical Review Letters</i> , 2017 , 119, 237203	7.4	24
141	Antiferromagnetic Resonance and Terahertz Continuum in ⊞-RuCl_{3}. <i>Physical Review Letters</i> , 2017 , 119, 227201	7.4	62
140	Nematic fluctuations and phase transitions in LaFeAsO: A Raman scattering study. <i>Physical Review B</i> , 2017 , 96,	3.3	7
139	Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3. <i>Physical Review B</i> , 2017 , 95,	3.3	28
138	Magnetic order and interactions in ferrimagnetic Mn3Si2Te6. <i>Physical Review B</i> , 2017 , 95,	3.3	18
137	High-T_{c} Superconductivity in FeSe at High Pressure: Dominant Hole Carriers and Enhanced Spin Fluctuations. <i>Physical Review Letters</i> , 2017 , 118, 147004	7.4	51
136	Unconventional spin dynamics in the honeycomb-lattice material ⊞RuCl3: High-field electron spin resonance studies. <i>Physical Review B</i> , 2017 , 96,	3.3	44

(2016-2017)

135	Flux growth in a horizontal configuration: An analog to vapor transport growth. <i>Physical Review Materials</i> , 2017 , 1,	3.2	24	
134	High-temperature magnetostructural transition in van der Waals-layered ⊞MoCl3. <i>Physical Review Materials</i> , 2017 , 1,	3.2	28	
133	Giant reversible magnetocaloric effect in the pyrochlore Er2Mn2O7 due to a cooperative two-sublattice ferromagnetic order. <i>Physical Review Materials</i> , 2017 , 1,	3.2	8	
132	Dynamical Scattering and Electron Channeling in Orthorhombic and Tetragonal LaFeAsO. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 18931-18938	3.8	1	
131	Interference evidence for Rashba-type spin splitting on a semimetallic WTe2 surface. <i>Physical Review B</i> , 2016 , 94,	3.3	9	
130	Pressure dependence of the magnetic ground states in MnP. <i>Physical Review B</i> , 2016 , 93,	3.3	27	
129	Low-temperature crystal and magnetic structure of ⊞RuCl3. <i>Physical Review B</i> , 2016 , 93,	3.3	174	
128	Fragile singlet ground-state magnetism in the pyrochlore osmates R2Os2O7 (R=Y and Ho). <i>Physical Review B</i> , 2016 , 93,	3.3	12	
127	Chiral anomaly and ultrahigh mobility in crystalline HfTe5. <i>Physical Review B</i> , 2016 , 93,	3.3	43	
126	Structural and magnetic properties of the 5d2 double perovskites Sr2BReO6 (B=Y, In). <i>Physical Review B</i> , 2016 , 93,	3.3	15	
125	Trion formation dynamics in monolayer transition metal dichalcogenides. <i>Physical Review B</i> , 2016 , 93,	3.3	127	
124	Slater Insulator in Iridate Perovskites with Strong Spin-Orbit Coupling. <i>Physical Review Letters</i> , 2016 , 117, 176603	7.4	23	
123	Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe. <i>Nature Communications</i> , 2016 , 7, 12146	17.4	161	
122	Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. <i>Science</i> , 2016 , 351, 688-91	33.3	451	
121	Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors. <i>Nano Letters</i> , 2016 , 16, 1896-902	11.5	266	
120	Retaining Large and Adjustable Elastic Strains of Kilogram-Scale Nb Nanowires. <i>ACS Applied Materials & Materials </i>	9.5	17	
119	The effect of chemical pressure on the structure and properties of A2CrOsO6 (A=Sr, Ca) ferrimagnetic double perovskite. <i>Journal of Solid State Chemistry</i> , 2016 , 238, 46-52	3.3	32	
118	Excitonic luminescence upconversion in a two-dimensional semiconductor. <i>Nature Physics</i> , 2016 , 12, 32	.3- 327	135	

117	Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. Journal of Materials Chemistry C, 2016 , 4, 315-322	7.1	171
116	Spectroscopic evidence for a type II Weyl semimetallic state in MoTe. <i>Nature Materials</i> , 2016 , 15, 1155-7	1 <u>1 6</u> 0	372
115	Magnetic Ordering in Sr3YCo4O10+x. <i>Scientific Reports</i> , 2016 , 6, 19762	4.9	8
114	Spin-lattice coupling mediated multiferroicity in (ND4)2FeCl5fD2O. <i>Physical Review B</i> , 2016 , 94,	3.3	10
113	Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd2Os2O7. <i>Nature Communications</i> , 2016 , 7, 11651	17.4	44
112	Boron arsenide phonon dispersion from inelastic x-ray scattering: Potential for ultrahigh thermal conductivity. <i>Physical Review B</i> , 2016 , 94,	3.3	24
111	Directional interlayer spin-valley transfer in two-dimensional heterostructures. <i>Nature Communications</i> , 2016 , 7, 13747	17.4	80
110	Competition of superconductivity with the structural transition in Mo3Sb7. <i>Physical Review B</i> , 2016 , 94,	3.3	3
109	Atomic-scale observation of structural and electronic orders in the layered compound ⊞-RuCl. <i>Nature Communications</i> , 2016 , 7, 13774	17.4	50
108	Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. <i>Nature Materials</i> , 2016 , 15, 733-40	27	524
107	Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. <i>Nature Communications</i> , 2015 , 6, 6242	17.4	896
106	Spin-liquid ground state in the frustrated J1🏿 2 zigzag chain system BaTb2O4. <i>Physical Review B</i> , 2015 , 92,	3.3	10
105	Population pulsation resonances of excitons in monolayer MoSe2 with sub-1 🖥 V linewidths. <i>Physical Review Letters</i> , 2015 , 114, 137402	7.4	20
104	Twisting phonons in complex crystals with quasi-one-dimensional substructures. <i>Nature Communications</i> , 2015 , 6, 6723	17.4	52
103	Electrical control of second-harmonic generation in a WSe2 monolayer transistor. <i>Nature Nanotechnology</i> , 2015 , 10, 407-11	28.7	300
102	Monolayer semiconductor nanocavity lasers with ultralow thresholds. <i>Nature</i> , 2015 , 520, 69-72	50.4	545
101	Strong spin-lattice coupling in CrSiTe3. APL Materials, 2015, 3, 041515	5.7	142
100	Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2O4. <i>Physical Review B</i> , 2015 , 91,	3.3	24

99	Structural and magnetic phase transitions in EuTi1\(\mathbb{U}\)NbxO3. Physical Review B, 2015, 92,	3.3	17
98	Effects of chemical pressure on the magnetic ground states of the osmate double perovskites SrCaCoOsO6 and Ca2CoOsO6. <i>Physical Review B</i> , 2015 , 92,	3.3	24
97	High antiferromagnetic transition temperature of the honeycomb compound SrRu2O6. <i>Physical Review B</i> , 2015 , 92,	3.3	33
96	Electron scattering, charge order, and pseudogap physics in La1.6Nd0.4SrxCuO4: An angle-resolved photoemission spectroscopy study. <i>Physical Review B</i> , 2015 , 92,	3.3	43
95	Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3. <i>Physical Review B</i> , 2015 , 92,	3.3	87
94	Synthesis of monoclinic IrTe2 under high pressure and its physical properties. <i>Physical Review B</i> , 2015 , 92,	3.3	5
93	Anisotropic magnetotransport and exotic longitudinal linear magnetoresistance in WTe2 crystals. <i>Physical Review B</i> , 2015 , 92,	3.3	124
92	Fragile structural transition in Mo3Sb7. <i>Physical Review B</i> , 2015 , 92,	3.3	3
91	Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7\(\mathbb{I}\)Tex. <i>Physical Review B</i> , 2015 , 92,	3.3	16
90	High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe12O19. <i>APL Materials</i> , 2015 , 3, 062512	5.7	34
89	Enhanced spin-phonon-electronic coupling in a 5d oxide. <i>Nature Communications</i> , 2015 , 6, 8916	17.4	35
88	Magnetic and structural transitions in La0.4Na0.6Fe2As2 single crystals. <i>Physical Review B</i> , 2015 , 91,	3.3	14
87	Flux growth utilizing the reaction between flux and crucible. Journal of Crystal Growth, 2015, 416, 62-65	5 1.6	6
86	Magnetic control of valley pseudospin in monolayer WSe2. <i>Nature Physics</i> , 2015 , 11, 148-152	16.2	529
85	Neutron-scattering measurements of spin excitations in LaFeAsO and Ba(Fe(0.953)Co(0.047))(2)As(2): evidence for a sharp enhancement of spin fluctuations by nematic order. <i>Physical Review Letters</i> , 2015 , 114, 057001	7.4	26
84	Quantum Femtosecond Magnetism in a Strongly Correlated Manganese Oxide. <i>Springer Proceedings in Physics</i> , 2015 , 218-220	0.2	
83	SpinLayer locking effects in optical orientation of exciton spin in bilayer WSe2. <i>Nature Physics</i> , 2014 , 10, 130-134	16.2	243
82	Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. <i>Nature Nanotechnology</i> , 2014 , 9, 436-42	28.7	185

81	Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. <i>Nature Nanotechnology</i> , 2014 , 9, 268-72	28.7	1202
80	Coherent Electronic Coupling in Atomically Thin MoSe2. <i>Physical Review Letters</i> , 2014 , 112,	7.4	88
79	Bond competition and phase evolution on the IrTellsurface. <i>Nature Communications</i> , 2014 , 5, 5358	17.4	31
78	Control of two-dimensional excitonic light emission via photonic crystal. 2D Materials, 2014, 1, 011001	5.9	124
77	Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. <i>ACS Nano</i> , 2014 , 8, 5079-88	16.7	146
76	Hidden one-dimensional spin modulation in a three-dimensional metal. <i>Nature Communications</i> , 2014 , 5, 4218	17.4	11
75	High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. <i>Nano Letters</i> , 2014 , 14, 3594-601	11.5	341
74	Research Update: Magnetic phase diagram of EuTi1\(\mathbb{B}\)ExO3 (B = Zr, Nb). APL Materials, 2014 , 2, 110701	5.7	17
73	Flexible Metallic Nanowires with Self-Adaptive Contacts to Semiconducting Transition-Metal Dichalcogenide Monolayers. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1760-1761	0.5	1
72	Y1NLaxVO3: Effects of doping on orbital ordering. <i>Physical Review B</i> , 2014 , 90,	3.3	6
71	Zero-field BR search for a time-reversal-symmetry-breaking mixed pairing state in superconducting Ba1 KxFe2As2. <i>Physical Review B</i> , 2014 , 89,	3.3	13
70	Magnetic ordering in the frustrated J102 Ising chain candidate BaNd2O4. <i>Physical Review B</i> , 2014 , 90,	3.3	20
69	Optical generation of excitonic valley coherence in monolayer WSe2. <i>Nature Nanotechnology</i> , 2013 , 8, 634-8	28.7	1001
68	Magnetism and electronic structure of La2ZnIrO6 and La2MgIrO6: Candidate Jeff=12 Mott insulators. <i>Physical Review B</i> , 2013 , 87,	3.3	63
67	Evolution of incommensurate spin order with magnetic field and temperature in the itinerant antiferromagnet GdSi. <i>Physical Review B</i> , 2013 , 88,	3.3	8
66	Absence of structural transition in M0.5IrTe2 (M = Mn, Fe, Co, Ni). <i>Physical Review B</i> , 2013 , 88,	3.3	5
65	Origin of the phase transition in IrTe2: Structural modulation and local bonding instability. <i>Physical Review B</i> , 2013 , 88,	3.3	51
64	Atomically resolved spectroscopic study of Sr2IrO4: experiment and theory. <i>Scientific Reports</i> , 2013 , 3, 3073	4.9	48

(2012-2013)

63	High-pressure synthesis, structure, and photoluminescence of a new KSbO3-type bismuth germanate Bi3Ge3O10.5. <i>Inorganic Chemistry</i> , 2013 , 52, 2138-41	5.1	4
62	Magnetic phase transition in single crystals of the chiral helimagnet Cr1/3NbS2. <i>Physical Review B</i> , 2013 , 87,	3.3	86
61	Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations. <i>Nature</i> , 2013 , 496, 69-73	50.4	114
60	Electrical control of neutral and charged excitons in a monolayer semiconductor. <i>Nature Communications</i> , 2013 , 4, 1474	17.4	1007
59	Dy-V magnetic interaction and local structure bias on the complex spin and orbital ordering in Dy1\(\text{DY1}\text{DY03} (x=0 and 0.2). <i>Physical Review B</i> , 2013 , 87,	3.3	4
58	Two-dimensional magnetic interactions in LaFeAsO. <i>Physical Review B</i> , 2013 , 87,	3.3	17
57	Crystal and magnetic structures and physical properties of a new pyroxene NaMnGe2O6 synthesized under high pressure. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2776-86	16.4	15
56	Magnetism dependent phonon anomaly in LaFeAsO observed via inelastic x-ray scattering. <i>Journal of Applied Physics</i> , 2013 , 113, 17E153	2.5	
55	Incommensurate antiferromagnetism in a pure spin system via cooperative organization of local and itinerant moments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 3287-92	11.5	22
54	Flux growth and physical properties of Mo3Sb7 single crystals. <i>Physical Review B</i> , 2013 , 87,	3.3	11
53	Frustration by competing interactions in the highly distorted double perovskites La2NaB?O6 (B?=Ru, Os). <i>Physical Review B</i> , 2013 , 87,	3.3	42
52	Magnetic structures and interplay between rare-earth Ce and Fe magnetism in single-crystal CeFeAsO. <i>Physical Review B</i> , 2013 , 88,	3.3	17
51	Magnetism-dependent phonon anomaly in LaFeAsO observed via inelastic x-ray scattering. <i>Physical Review B</i> , 2013 , 87,	3.3	7
50	Magnetic phase transition in the low-dimensional compound BaMn2Si2O7. <i>Physical Review B</i> , 2013 , 88,	3.3	10
49	The hybrid lattice of K(x)Fe(2-y)Se2: where superconductivity and magnetism coexist. <i>Scientific Reports</i> , 2013 , 3, 2047	4.9	13
48	Magnetic coupling between Sm3+ and the canted spin in an antiferromagnetic SmFeO3 single crystal. <i>Physical Review B</i> , 2012 , 86,	3.3	57
47	Complex itinerant ferromagnetism in noncentrosymmetric Cr11Ge19. Physical Review B, 2012, 85,	3.3	17
46	NMR search for the spin nematic state in a LaFeAsO single crystal. <i>Physical Review Letters</i> , 2012 , 109, 247001	7.4	62

45	High superconducting anisotropy and weak vortex pinning in Co-doped LaFeAsO. <i>Physical Review B</i> , 2012 , 86,	3.3	8
44	Role of magnetic exchange energy on charge ordering in R1/3Sr2/3FeO3 (R=La,Pr,andNd). <i>Physical Review B</i> , 2011 , 84,	3.3	14
43	Suppression of superconductivity in Fe chalcogenides by annealing: A reverse effect to pressure. <i>Physical Review B</i> , 2011 , 84,	3.3	8
42	Spin-state transitions in PrCoO3 studied with neutron powder diffraction. <i>Physical Review B</i> , 2011 , 84,	3.3	10
41	Evidence of local disorder in the overdoped regime of Ba(Fe1\(\text{ICox} \))2As2. <i>Physical Review B</i> , 2011 , 84,	3.3	6
40	Spin and orbital ordering in Y1\(\mathbb{L}\) LaxVO3. <i>Physical Review B</i> , 2011 , 84,	3.3	20
39	Anisotropic magnetoelastic coupling in single-crystalline CeFeAsO as seen via high-resolution x-ray diffraction. <i>Physical Review B</i> , 2011 , 84,	3.3	6
38	Contamination from magnetic starting materials in flux-grown single crystals of RFeAsO superconductors. <i>Physical Review B</i> , 2011 , 84,	3.3	4
37	Flux requirements for the growth of RFeAsO (R=rare earth) superconductors. <i>Applied Physics Letters</i> , 2011 , 98, 072504	3.4	9
36	Phase transitions and iron-ordered moment form factor in LaFeAsO. <i>Physical Review B</i> , 2010 , 82,	3.3	32
35	Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth perovskites RCrO3. <i>Physical Review B</i> , 2010 , 81,	3.3	94
34	Surface-driven electronic structure in LaFeAsO studied by angle-resolved photoemission spectroscopy. <i>Physical Review B</i> , 2010 , 82,	3.3	33
33	Interplay of Fe and Nd magnetism in NdFeAsO single crystals. Physical Review B, 2010, 82,	3.3	46
32	Structural phase transition and superlattice misfit strain of RFeAsO (R=La, Pr, Nd, Sm). <i>Physical Review B</i> , 2010 , 82,	3.3	35
31	Zooming on the quantum critical point in Nd-LSCO. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S12-S13	1.3	10
30	Structural phase transition in Ba(Fe0.973Cr0.027)2As2 single crystals. <i>Physical Review B</i> , 2009 , 80,	3.3	15
29	Orbital hybridization in RVO3 perovskites: A high-pressure study. <i>Physical Review B</i> , 2009 , 80,	3.3	23
28	Unconventional London penetration depth in single-crystal Ba(Fe0.93Co0.07)2As2 superconductors. <i>Physical Review Letters</i> , 2009 , 102, 127004	7.4	144

(2005-2009)

27	Flux growth at ambient pressure of millimeter-sized single crystals of LaFeAsO, LaFeAsO1NFx, and LaFe1NCoxAsO. <i>Applied Physics Letters</i> , 2009 , 95, 222504	3.4	75
26	Size-dependent magnetic properties of high oxygen content YMn2O5—multiferroic nanoparticles. <i>Journal of Applied Physics</i> , 2009 , 105, 033908	2.5	21
25	In situ high energy x-ray synchrotron diffraction study of the synthesis and stoichiometry of LaFeAsO and LaFeAsO1NFy. <i>Journal of Applied Physics</i> , 2009 , 105, 123912	2.5	10
24	Enhancement of the Nernst effect by stripe order in a high-T(c) superconductor. <i>Nature</i> , 2009 , 458, 743	-5 0.4	117
23	Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2. <i>Nature Materials</i> , 2009 , 8, 471-5	27	243
22	Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor. <i>Nature Physics</i> , 2009 , 5, 31-34	16.2	151
21	Synthesis, thermal stability and magnetic properties of the Lu1\(\mathbb{L}\)LaxMn2O5 solid solution. <i>Journal of Solid State Chemistry</i> , 2009 , 182, 3013-3020	3.3	2
20	Effect of oxygen content on the magnetic properties of multiferroic YMn(2)O(5+) <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 346002	1.8	8
19	Thermopower across the stripe critical point of La1.6Nd0.4SrxCuO4: Evidence for a quantum critical point in a hole-doped high-Tc superconductor. <i>Physical Review B</i> , 2009 , 79,	3.3	33
18	Effects of Co substitution on thermodynamic and transport properties and anisotropic Hc2 in Ba(Fe1\(\text{MC}\) Cox)2As2 single crystals. <i>Physical Review B</i> , 2008 , 78,	3.3	483
17	Structural transition and anisotropic properties of single-crystalline SrFe2As2. <i>Physical Review B</i> , 2008 , 78,	3.3	158
16	Nature of Ho magnetism in multiferroic HoMnO3. <i>Physical Review Letters</i> , 2008 , 100, 217201	7.4	49
15	Determination of the exchange anisotropy in perovskite antiferromagnets using powder inelastic neutron scattering. <i>Physical Review B</i> , 2008 , 78,	3.3	23
14	Frustrated superexchange interaction versus orbital order in a LaVO3 crystal. <i>Physical Review Letters</i> , 2008 , 100, 046401	7.4	17
13	Orbital fluctuations and orbital flipping in RVO3 perovskites. <i>Physical Review Letters</i> , 2007 , 99, 197201	7.4	28
12	Superexchange interaction in orbitally fluctuating RVO3. Physical Review Letters, 2007, 99, 156401	7.4	43
11	Stabilization of charge ordering in La1/3Sr2/3FeO3-delta by magnetic exchange. <i>Physical Review Letters</i> , 2007 , 98, 126402	7.4	36
10	Bulk modulus anomaly in RCoO3 (R=La, Pr, and Nd). <i>Physical Review B</i> , 2005 , 71,	3.3	80

9	LSGM-Based Solid Oxide Fuel Cell with 1.4 W/cm2 Power Density and 30 Day Long-Term Stability. Journal of the Electrochemical Society, 2005 , 152, A1511	3.9	68	
8	Opposing spin-canting mechanism in single-crystal LuVO3 and YVO3. <i>Physical Review B</i> , 2005 , 72,	3.3	28	
7	Unusually strong orbit-lattice interactions in the RVO3 perovskites. <i>Physical Review Letters</i> , 2004 , 93, 235901	7.4	49	
6	Ferromagnetism in LaCoO3. <i>Physical Review B</i> , 2004 , 70,	3.3	129	
5	Ruthenium double perovskites: Transport and magnetic properties. <i>Physical Review B</i> , 2004 , 69,	3.3	44	
4	Bond-length fluctuations and the spin-state transition in LCoO3 (L=La, Pr, and Nd). <i>Physical Review B</i> , 2004 , 69,	3.3	164	
3	Thermal conductivity of La2⊠SrxCuO4(0.05 ?x? 0.22). New Journal of Physics, 2004 , 6, 143-143	2.9	2	
2	Thermal conductivity in the stripe-ordered phase of cuprates and nickelates. <i>Physical Review B</i> , 2003 , 68,	3.3	23	
1	Oxygen stoichiometry, ferromagnetism, and transport properties of La2\(\mathbb{N}\) NiMnO6+\(\mathbb{P}\) Physical Review B 2003 68	3.3	286	