Ricarda Winkelmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7778452/publications.pdf

Version: 2024-02-01

54 papers 6,166 citations

32 h-index 53 g-index

130 all docs

130 docs citations

130 times ranked

6277 citing authors

#	Article	IF	CITATIONS
1	Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8252-8259.	7.1	1,832
2	Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Climate Change, 2016, 6, 360-369.	18.8	442
3	Why the right climate target was agreed in Paris. Nature Climate Change, 2016, 6, 649-653.	18.8	309
4	The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description. Cryosphere, 2011, 5, 715-726.	3.9	262
5	Interacting tipping elements increase risk of climate domino effects under global warming. Earth System Dynamics, 2021, 12, 601-619.	7.1	227
6	Projected land ice contributions to twenty-first-century sea level rise. Nature, 2021, 593, 74-82.	27.8	200
7	ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere, 2020, 14, 3033-3070.	3.9	198
8	Critical insolation–CO2 relation for diagnosing past and future glacial inception. Nature, 2016, 529, 200-203.	27.8	185
9	Future sea level rise constrained by observations and long-term commitment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2597-2602.	7.1	174
10	The far reach of ice-shelf thinning in Antarctica. Nature Climate Change, 2018, 8, 53-57.	18.8	161
11	Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. Cryosphere, 2012, 6, 273-286.	3.9	136
12	The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet. Cryosphere, 2011, 5, 727-740.	3.9	130
13	Consistent evidence of increasing Antarctic accumulation with warming. Nature Climate Change, 2015, 5, 348-352.	18.8	130
14	The hysteresis of the Antarctic Ice Sheet. Nature, 2020, 585, 538-544.	27.8	115
15	Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models. Earth System Dynamics, 2014, 5, 271-293.	7.1	103
16	Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth System Dynamics, 2020, 11, 35-76.	7.1	92
17	Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet. Science Advances, 2015, 1, e1500589.	10.3	91
18	A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales. Surveys in Geophysics, 2017, 38, 385-406.	4.6	88

#	Article	IF	CITATIONS
19	Identifying a Safe and Just Corridor for People and the Planet. Earth's Future, 2021, 9, e2020EF001866.	6.3	84
20	Increased future ice discharge from Antarctica owing to higher snowfall. Nature, 2012, 492, 239-242.	27.8	78
21	Antarctic sub-shelf melt rates via PICO. Cryosphere, 2018, 12, 1969-1985.	3.9	73
22	Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). Journal of Glaciology, 2020, 66, 891-904.	2.2	70
23	initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6. Cryosphere, 2019, 13, 1441-1471.	3.9	69
24	Global warming due to loss of large ice masses and Arctic summer sea ice. Nature Communications, 2020, 11, 5177.	12.8	67
25	Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nature Geoscience, 2019, 12, 174-179.	12.9	65
26	Parameterization for subgrid-scale motion of ice-shelf calving fronts. Cryosphere, 2011, 5, 35-44.	3.9	52
27	Closing the loop: Reconnecting human dynamics to Earth System science. Infrastructure Asset Management, 2017, 4, 151-157.	1.6	48
28	Social tipping processes towards climate action: A conceptual framework. Ecological Economics, 2022, 192, 107242.	5.7	47
29	The tipping points and early warning indicators for Pine Island Glacier, West Antarctica. Cryosphere, 2021, 15, 1501-1516.	3.9	42
30	A simple equation for the melt elevation feedback of ice sheets. Cryosphere, 2016, 10, 1799-1807.	3.9	40
31	Emergence of cascading dynamics in interacting tipping elements of ecology and climate. Royal Society Open Science, 2020, 7, 200599.	2.4	37
32	Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 1: Boundary conditions and climatic forcing. Cryosphere, 2020, 14, 599-632.	3.9	37
33	Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis. Cryosphere, 2020, 14, 633-656.	3.9	37
34	Sea-Level Rise: From Global Perspectives to Local Services. Frontiers in Marine Science, 2022, 8, .	2.5	33
35	Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophysical Research Letters, 2021, 48, e2020GL091741.	4.0	28
36	Ten new insights in climate science 2021: a horizon scan. Global Sustainability, 2021, 4, .	3.3	26

#	Article	IF	Citations
37	Dynamics of tipping cascades on complex networks. Physical Review E, 2020, 101, 042311.	2.1	24
38	Linear response functions to project contributions to future sea level. Climate Dynamics, 2013, 40, 2579-2588.	3.8	21
39	Grounding-line flux formula applied as a flux condition in numerical simulations fails for buttressed Antarctic ice streams. Cryosphere, 2018, 12, 3229-3242.	3.9	21
40	Modeling Antarctic tides in response to ice shelf thinning and retreat. Journal of Geophysical Research: Oceans, 2014, 119, 87-97.	2.6	20
41	What do we mean, â€~tipping cascade'?. Environmental Research Letters, 2021, 16, 125011.	5.2	19
42	How motifs condition critical thresholds for tipping cascades in complex networks: Linking micro- to macro-scales. Chaos, 2020, 30, 043129.	2.5	18
43	An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures. Environmental Research Letters, 2020, 15, 094087.	5.2	18
44	The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model. Cryosphere, 2020, 14, 3097-3110.	3.9	16
45	Impact of an AMOC weakening on the stability of the southern Amazon rainforest. European Physical Journal: Special Topics, 2021, 230, 3065-3073.	2.6	15
46	Basin stability and limit cycles in a conceptual model for climate tipping cascades. New Journal of Physics, 2020, 22, 123031.	2.9	13
47	Impact of the melt–albedo feedback on the future evolution of the Greenland Ice Sheet with PISM-dEBM-simple. Cryosphere, 2021, 15, 5739-5764.	3.9	11
48	Coupling framework (1.0) for the PISM $(1.1.4)$ ice sheet model and the MOM5 $(5.1.0)$ ocean model via the PICO ice shelf cavity model in an Antarctic domain. Geoscientific Model Development, 2021, 14, 3697-3714.	3.6	10
49	Modelling nonlinear dynamics of interacting tipping elements on complex networks: the PyCascades package. European Physical Journal: Special Topics, 2021, 230, 3163-3176.	2.6	8
50	Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry. Cryosphere, 2020, 14, 3537-3550.	3.9	8
51	A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales. Space Sciences Series of ISSI, 2017, , 395-416.	0.0	6
52	Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations. Cryosphere, 2022, 16, 1927-1940.	3.9	6
53	Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet. Cryosphere, 2022, 16, 1979-1996.	3.9	2
54	The Antarctic Ice Sheet–A Sleeping Giant?. Frontiers for Young Minds, 0, 10, .	0.8	O