
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7778007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulator. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 546-566.	1.4	263
2	Role of the <i>Escherichia coli</i> SbmA in the antimicrobial activity of prolineâ€rich peptides. Molecular Microbiology, 2007, 66, 151-163.	1.2	204
3	Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cellular and Molecular Life Sciences, 2011, 68, 2317-2330.	2.4	203
4	The Host Antimicrobial Peptide Bac71-35 Binds to Bacterial Ribosomal Proteins and Inhibits Protein Synthesis. Chemistry and Biology, 2014, 21, 1639-1647.	6.2	191
5	Non-Membrane Permeabilizing Modes of Action of Antimicrobial Peptides on Bacteria. Current Topics in Medicinal Chemistry, 2015, 16, 76-88.	1.0	166
6	Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins. FEBS Journal, 1992, 209, 589-595.	0.2	143
7	Proline-rich antimicrobial peptides targeting protein synthesis. Natural Product Reports, 2017, 34, 702-711.	5.2	132
8	Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. Journal of Antimicrobial Chemotherapy, 2006, 58, 950-959.	1.3	125
9	Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1732-1740.	1.1	116
10	Structure and Biology of Cathelicidins. , 2000, 479, 203-218.		115
11	Chemical synthesis and biological activity of a novel antibacterial peptide deduced from a pig myeloid cDNA. FEBS Letters, 1994, 337, 303-307.	1.3	105
12	cDNA sequences of three sheep myeloid cathelicidins. FEBS Letters, 1995, 376, 225-228.	1.3	98
13	Identification and characterization of a primary antibacterial domain in CAP18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Letters, 1994, 339, 108-112.	1.3	94
14	Structural organization of the bovine cathelicidin gene family and identification of a novel member1. FEBS Letters, 1997, 417, 311-315.	1.3	90
15	PMAP-37, a Novel Antibacterial Peptide from Pig Myeloid Cells. cDNA Cloning, Chemical Synthesis and Activity. FEBS Journal, 1995, 228, 941-946.	0.2	90
16	Structure of the mammalian antimicrobial peptide Bac7(1–16) bound within the exit tunnel of a bacterial ribosome. Nucleic Acids Research, 2016, 44, 2429-2438.	6.5	89
17	Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides, 2004, 25, 2055-2061.	1.2	86
18	Functional Characterization of SbmA, a Bacterial Inner Membrane Transporter Required for Importing the Antimicrobial Peptide Bac7(1-35). Journal of Bacteriology, 2013, 195, 5343-5351.	1.0	84

2

#	Article	IF	CITATIONS
19	Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. BMC Microbiology, 2012, 12, 145.	1.3	79
20	Essential Role for the BacA Protein in the Uptake of a Truncated Eukaryotic Peptide in <i>Sinorhizobium meliloti</i> . Journal of Bacteriology, 2009, 191, 1519-1527.	1.0	71
21	BacA Is Essential for Bacteroid Development in Nodules of Galegoid, but not Phaseoloid, Legumes. Journal of Bacteriology, 2010, 192, 2920-2928.	1.0	67
22	Structural Aspects of Plant Antimicrobial Peptides. Current Protein and Peptide Science, 2010, 11, 210-219.	0.7	65
23	Rapid and Reliable Detection of Antimicrobial Peptide Penetration into Gram-Negative Bacteria Based on Fluorescence Quenching. Antimicrobial Agents and Chemotherapy, 2009, 53, 3501-3504.	1.4	64
24	Structure-Activity Relationships of the Antimicrobial Peptide Arasin 1 — And Mode of Action Studies of the N-Terminal, Proline-Rich Region. PLoS ONE, 2013, 8, e53326.	1.1	62
25	Novel cathelicidins in horse leukocytes. FEBS Letters, 1999, 457, 459-464.	1.3	57
26	The Proline-rich Antibacterial Peptide Bac7 Binds to and Inhibits in vitro the Molecular Chaperone DnaK. International Journal of Peptide Research and Therapeutics, 2009, 15, 147-155.	0.9	55
27	The proline-rich peptide Bac7(1-35) reduces mortality from Salmonella typhimurium in a mouse model of infection. BMC Microbiology, 2010, 10, 178.	1.3	53
28	Structural aspects and biological properties of the cathelicidin PMAP-36. FEBS Journal, 2005, 272, 4398-4406.	2.2	51
29	Molecular cloning of Bac7, a proline- and arginine-rich antimicrobial peptide from bovine neutrophils. FEBS Letters, 1994, 352, 197-200.	1.3	47
30	PEGylation of the peptide Bac7(1–35) reduces renal clearance while retaining antibacterial activity and bacterial cell penetration capacity. European Journal of Medicinal Chemistry, 2015, 95, 210-219.	2.6	44
31	Fragments of the Nonlytic Proline-Rich Antimicrobial Peptide Bac5 Kill Escherichia coli Cells by Inhibiting Protein Synthesis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	44
32	The salmonid cathelicidins: A gene family with highly varied C-terminal antimicrobial domains. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2009, 152, 376-381.	0.7	43
33	Structural and Functional Analysis of Horse Cathelicidin Peptides. Antimicrobial Agents and Chemotherapy, 2001, 45, 715-722.	1.4	42
34	Effect of Size and N-Terminal Residue Characteristics on Bacterial Cell Penetration and Antibacterial Activity of the Proline-Rich Peptide Bac7. Journal of Medicinal Chemistry, 2015, 58, 1195-1204.	2.9	40
35	Design, antimicrobial activity and mechanism of action of Arg-rich ultra-short cationic lipopeptides. PLoS ONE, 2019, 14, e0212447.	1.1	38
36	Genome-Wide Transcriptional Profiling of the Escherichia coli Response to a Proline-Rich Antimicrobial Peptide. Antimicrobial Agents and Chemotherapy, 2004, 48, 3260-3267.	1.4	35

#	Article	IF	CITATIONS
37	Functional and Structural Study of the Dimeric Inner Membrane Protein SbmA. Journal of Bacteriology, 2013, 195, 5352-5361.	1.0	35
38	In vitro and in vivo evaluation of BMAP-derived peptides for the treatment of cystic fibrosis-related pulmonary infections. Amino Acids, 2016, 48, 2253-2260.	1.2	35
39	Prolineâ€Rich Peptides with Improved Antimicrobial Activity against <i>E. coli</i> , <i>K. pneumoniae</i> , and <i>A. baumannii</i> . ChemMedChem, 2019, 14, 2025-2033.	1.6	35
40	Internalization of a thiazole-modified peptide in Sinorhizobium meliloti occurs by BacA-dependent and -independent mechanisms. Microbiology (United Kingdom), 2010, 156, 2702-2713.	0.7	31
41	The Mechanism of Killing by the Proline-Rich Peptide Bac7(1–35) against Clinical Strains of Pseudomonas aeruginosa Differs from That against Other Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	31
42	Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides. Journal of Microbiology and Biotechnology, 2014, 24, 160-167.	0.9	28
43	Inducible expression of an antimicrobial peptide of the innate immunity in polymorphonuclear leukocytes. Journal of Leukocyte Biology, 2002, 72, 1003-10.	1.5	26
44	D-BMAP18 Antimicrobial Peptide Is Active In vitro, Resists to Pulmonary Proteases but Loses Its Activity in a Murine Model of Pseudomonas aeruginosa Lung Infection. Frontiers in Chemistry, 2017, 5, 40.	1.8	25
45	Peptide Inhibitors of Bacterial Protein Synthesis with Broad Spectrum and SbmA-Independent Bactericidal Activity against Clinical Pathogens. Journal of Medicinal Chemistry, 2020, 63, 9590-9602.	2.9	24
46	Effects of Lipidation on a Proline-Rich Antibacterial Peptide. International Journal of Molecular Sciences, 2021, 22, 7959.	1.8	24
47	Inner membrane proteins YgdD and SbmA are required for the complete susceptibility of Escherichia coli to the proline-rich antimicrobial peptide arasin 1(1–25). Microbiology (United Kingdom), 2016, 162, 601-609.	0.7	24
48	Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins. Fish and Shellfish Immunology, 2016, 59, 456-468.	1.6	22
49	Enteric YaiW Is a Surface-Exposed Outer Membrane Lipoprotein That Affects Sensitivity to an Antimicrobial Peptide. Journal of Bacteriology, 2014, 196, 436-444.	1.0	21
50	Lipopolysaccharide Phosphorylation by the WaaY Kinase Affects the Susceptibility of Escherichia coli to the Human Antimicrobial Peptide LL-37. Journal of Biological Chemistry, 2015, 290, 19933-19941.	1.6	18
51	Search for Shorter Portions of the Prolineâ€Rich Antimicrobial Peptide Fragment Bac5(1–25) That Retain Antimicrobial Activity by Blocking Protein Synthesis. ChemMedChem, 2019, 14, 343-348.	1.6	17
52	Induced expression of cathelicidins in trout (<scp><i>Oncorhynchus mykiss</i></scp>) challenged with four different bacterial pathogens. Journal of Peptide Science, 2018, 24, e3089.	0.8	16
53	Sub-MIC effects of a proline-rich antibacterial peptide on clinical isolates of Acinetobacter baumannii. Journal of Medical Microbiology, 2019, 68, 1253-1265.	0.7	16
54	Natural and Synthetic Halogenated Amino Acids—Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules, 2021, 26, 7401.	1.7	16

#	Article	IF	CITATIONS
55	Investigating the Mode of Action of Proline-Rich Antimicrobial Peptides Using a Genetic Approach: A Tool to Identify New Bacterial Targets Amenable to the Design of Novel Antibiotics. Methods in Molecular Biology, 2008, 494, 161-176.	0.4	14
56	Role of Cathelicidin Peptides in Bovine Host Defense and Healing. Probiotics and Antimicrobial Proteins, 2010, 2, 12-20.	1.9	13
57	Cellular Internalization and Cytotoxicity of the Antimicrobial Proline-rich Peptide Bac7(1-35) in Monocytes/Macrophages, and its Activity Against Phagocytosed Salmonella typhimurium. Protein and Peptide Letters, 2014, 21, 382-390.	0.4	12
58	New Antimicrobials Targeting Bacterial RNA Polymerase Holoenzyme Assembly Identified with an <i>in Vivo</i> BRET-Based Discovery Platform. ACS Chemical Biology, 2019, 14, 1727-1736.	1.6	10
59	Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms?. Critical Reviews in Microbiology, 2023, 49, 117-149.	2.7	10
60	Single Cell Flow Cytometry Assay for Peptide Uptake by Bacteria. Bio-protocol, 2016, 6, .	0.2	9
61	Characterization of Cetacean Proline-Rich Antimicrobial Peptides Displaying Activity against ESKAPE Pathogens. International Journal of Molecular Sciences, 2020, 21, 7367.	1.8	8
62	Rational Designed Hybrid Peptides Show up to a 6-Fold Increase in Antimicrobial Activity and Demonstrate Different Ultrastructural Changes as the Parental Peptides Measured by BioSAXS. Frontiers in Pharmacology, 2021, 12, 769739.	1.6	6
63	Use of Unnatural Amino Acids to Probe Structure–Activity Relationships and Mode-of-Action of Antimicrobial Peptides. Methods in Molecular Biology, 2012, 794, 169-183.	0.4	5
64	Sustainable, Site‧pecific Linkage of Antimicrobial Peptides to Cotton Textiles. Macromolecular Bioscience, 2020, 20, e2000199.	2.1	5
65	The Anti-Pseudomonal Peptide D-BMAP18 Is Active in Cystic Fibrosis Sputum and Displays Anti-Inflammatory In Vitro Activity. Microorganisms, 2020, 8, 1407.	1.6	5
66	Cathelicidins. , 2016, , 225-237.		4
67	Methods for Elucidating the Mechanism of Action of Proline-Rich and Other Non-lytic Antimicrobial Peptides. Methods in Molecular Biology, 2017, 1548, 283-295.	0.4	4
68	The proline-rich myticalins from Mytilus galloprovincialis display a membrane-permeabilizing antimicrobial mode of action. Peptides, 2021, 143, 170594.	1.2	4
69	Elastase-Activated Antimicrobial Peptide for a Safer Pulmonary Treatment of Cystic Fibrosis Infections. Antibiotics, 2022, 11, 319.	1.5	3