Dagmar Meyer zu Heringdorf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7777820/publications.pdf

Version: 2024-02-01

72 papers

3,234 citations

30 h-index 56 g-index

72 all docs

72 docs citations

times ranked

72

3121 citing authors

#	Article	IF	Citations
1	Lysophospholipid receptors: Signalling, pharmacology and regulation by lysophospholipid metabolism. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 923-940.	1.4	329
2	Regulation and functional roles of sphingosine kinases. Naunyn-Schmiedeberg's Archives of Pharmacology, 2007, 374, 413-428.	1.4	203
3	Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors. EMBO Journal, 1998, 17, 2830-2837.	3. 5	202
4	Activation of a High Affinity Gi Protein-coupled Plasma Membrane Receptor by Sphingosine-1-phosphate. Journal of Biological Chemistry, 1996, 271, 2082-2087.	1.6	195
5	Sphingosylphosphorylcholine—biological functions and mechanisms of action. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 178-189.	1.2	121
6	IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation. EMBO Journal, 2012, 31, 14-28.	3.5	117
7	Molecular diversity of sphingolipid signalling. FEBS Letters, 1997, 410, 34-38.	1.3	108
8	Formyl Peptide Receptor Signaling in HL-60 Cells through Sphingosine Kinase. Journal of Biological Chemistry, 1999, 274, 3994-3999.	1.6	97
9	Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. British Journal of Pharmacology, 2000, 130, 1871-1877.	2.7	95
10	Stimulation of intracellular sphingosine-1-phosphate production by G-protein-coupled sphingosine-1-phosphate receptors. European Journal of Pharmacology, 2001, 414, 145-154.	1.7	89
11	Photolysis of intracellular caged sphingosine-1-phosphate causes Ca2+mobilization independently of G-protein-coupled receptors. FEBS Letters, 2003, 554, 443-449.	1.3	87
12	Evidence for Edg-3 Receptor-Mediated Activation of <i>I</i> _{K.ACh} by Sphingosine-1-Phosphate in Human Atrial Cardiomyocytes. Molecular Pharmacology, 2000, 58, 449-454.	1.0	83
13	Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis. EMBO Journal, 2012, 31, 2615-2628.	3.5	81
14	Chains and fragments of tetanus toxin. Separation, reassociation and pharmacological properties. FEBS Journal, 1989, 182, 649-656.	0.2	78
15	Sphingosine-1-phosphate reduces rat renal and mesenteric blood flow in vivo in a pertussis toxin-sensitive manner. British Journal of Pharmacology, 2000, 130, 1878-1883.	2.7	77
16	Lysophospholipid receptor-dependent and -independent calcium signaling. Journal of Cellular Biochemistry, 2004, 92, 937-948.	1.2	73
17	Closing in on the toxic domain through analysis of a variant Clostridium difficile cytotoxin B. Molecular Microbiology, 1995, 17, 313-321.	1.2	72
18	Role of sphingosine kinase in Ca2+signalling by epidermal growth factor receptor. FEBS Letters, 1999, 461, 217-222.	1.3	64

#	Article	IF	CITATIONS
19	Calcium signalling by G protein-coupled sphingolipid receptors in bovine aortic endothelial cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 354, 397-403.	1.4	57
20	Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors. Life Sciences, 2001, 68, 2535-2540.	2.0	54
21	Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks. Frontiers in Pharmacology, 2016, 7, 167.	1.6	52
22	Stimulation of Sphingosine-1-phosphate Formation by the P2Y ₂ Receptor in HL-60 Cells: Ca ²⁺ Requirement and Implication in Receptor-Mediated Ca ²⁺ Mobilization, but Not MAP Kinase Activation. Molecular Pharmacology, 2000, 58, 491-497.	1.0	39
23	Depolarisation induces rapid and transient formation of intracellular sphingosine-1-phosphate. FEBS Letters, 2001, 509, 239-244.	1.3	38
24	Lysosphingolipid receptor-mediated diuresis and natriuresis in anaesthetized rats. British Journal of Pharmacology, 2001, 132, 1925-1933.	2.7	36
25	Sphingosine 1-phosphate (S1P) induces COX-2 expression and PGE2 formation via S1P receptor 2 in renal mesangial cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 11-21.	1.2	36
26	Lysophospholipid Receptor-Mediated Calcium Signaling in Human Keratinocytes. Journal of Investigative Dermatology, 2008, 128, 1487-1498.	0.3	35
27	Long noncoding RNA LISPR1 is required for S1P signaling and endothelial cell function. Journal of Molecular and Cellular Cardiology, 2018, 116, 57-68.	0.9	35
28	Analysis of receptor-G protein interactions in permeabilized cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 351, 329-336.	1.4	34
29	Evidence for a link between histone deacetylation and Ca2+ homoeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts. Biochemical Journal, 2012, 447, 457-464.	1.7	33
30	Discrimination between plasma membrane and intracellular target sites of sphingosylphosphorylcholine. European Journal of Pharmacology, 1998, 354, 113-122.	1.7	31
31	Gαq-mediated plasma membrane translocation of sphingosine kinase-1 and cross-activation of S1P receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 357-370.	1.2	30
32	The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking. Experimental Cell Research, 2015, 330, 66-80.	1.2	30
33	Sphingosineâ€1â€phosphate (S1P) induces potent antiâ€inflammatory effects <i>in vitro</i> ovivoby S1P receptor 4â€mediated suppression of 5â€lipoxygenase activity. FASEB Journal, 2019, 33, 1711-1726.	0.2	30
34	Activation of sphingosine kinase by muscarinic receptors enhances NO-mediated and attenuates EDHF-mediated vasorelaxation. Basic Research in Cardiology, 2009, 104, 50-59.	2.5	28
35	Sphingosine kinase 2 is a negative regulator of inflammatory macrophage activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1235-1246.	1.2	27
36	Bradykinin mediates myogenic differentiation in murine myoblasts through the involvement of SK1/Spns2/S1P2 axis. Cellular Signalling, 2018, 45, 110-121.	1.7	25

#	Article	IF	CITATIONS
37	Enhanced Ca2+ storage in sphingosine-1-phosphate lyase-deficient fibroblasts. Cellular Signalling, 2010, 22, 476-483.	1.7	24
38	Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice. Neuropharmacology, 2014, 85, 314-327.	2.0	24
39	Inhibition of Ca2+ signalling by the sphingosine 1-phosphate receptor S1P1. Cellular Signalling, 2003, 15, 677-687.	1.7	23
40	Thiazolidinedioneâ€dependent activation of sphingosine kinase 1 causes an antiâ€fibrotic effect in renal mesangial cells. British Journal of Pharmacology, 2012, 166, 1018-1032.	2.7	23
41	The activation of RhoC in vascular endothelial cells is required for the S1P receptor type 2-induced inhibition of angiogenesis. Cellular Signalling, 2013, 25, 2478-2484.	1.7	21
42	Sphingolipid receptor signaling and function in human bladder carcinoma cells: inhibition of LPA- but enhancement of thrombin-stimulated cell motility. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 361, 1-11.	1.4	20
43	Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors. Cellular Physiology and Biochemistry, 2018, 45, 2516-2528.	1.1	20
44	Downregulation of the S1P Transporter Spinster Homology Protein 2 (Spns2) Exerts an Anti-Fibrotic and Anti-Inflammatory Effect in Human Renal Proximal Tubular Epithelial Cells. International Journal of Molecular Sciences, 2018, 19, 1498.	1.8	20
45	Problem- vs. lecture-based pharmacology teaching in a German medical school. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 64-68.	1.4	19
46	Glucocorticoids protect renal mesangial cells from apoptosis by increasing cellular sphingosine-1-phosphate. Kidney International, 2010, 77, 870-879.	2.6	19
47	Transient relaxation of rat mesenteric microvessels by ceramides. British Journal of Pharmacology, 2002, 135, 417-426.	2.7	18
48	Pharmacology of the Sphingosine-1-Phosphate Signalling System. Handbook of Experimental Pharmacology, 2013, , 239-253.	0.9	16
49	Upregulation of ABC transporters contributes to chemoresistance of sphingosine 1-phosphate lyase-deficient fibroblasts. Journal of Lipid Research, 2015, 56, 60-69.	2.0	16
50	Characterization of cholesterol homeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts reveals a Niemann-Pick disease type C-like phenotype with enhanced lysosomal Ca2+ storage. Scientific Reports, 2017, 7, 43575.	1.6	16
51	Mitochondrial fragmentation in human macrophages attenuates palmitate-induced inflammatory responses. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 433-446.	1.2	15
52	PPARÎ ³ agonists upregulate sphingosine 1-phosphate (S1P) receptor 1 expression, which in turn reduces S1P-induced [Ca2+]i increases in renal mesangial cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1634-1643.	1.2	13
53	Sphingosylphosphorylcholine, a naturally occurring lipid mediator, inhibits human platelet function. British Journal of Pharmacology, 2003, 138, 435-444.	2.7	12
54	Secreted modular calcium-binding protein 1 binds and activates thrombin to account for platelet hyperreactivity in diabetes. Blood, 2021, 137, 1641-1651.	0.6	12

#	Article	IF	Citations
55	Translocation of Microfilament-Associated Inhibitory guanine-nucleotide-binding Proteins to the Plasma Membrane in Myeloid Differentiated Human Leukemia (HL-60) Cells. FEBS Journal, 1996, 235, 670-676.	0.2	11
56	Receptor-Induced Translocation of Activated Guanine-Nucleotide-Binding Protein alphai Subunits to the Cytoskeleton in Myeloid Differentiated Human Leukemia (HL-60) Cells. FEBS Journal, 1996, 239, 752-758.	0.2	10
57	Transforming growth factor \hat{l}^2 2 (TGF- \hat{l}^2 2)-induced connective tissue growth factor (CTGF) expression requires sphingosine 1-phosphate receptor 5 (S1P5) in human mesangial cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 519-526.	1.2	10
58	S1P d20:1, an endogenous modulator of S1P d18:1/S1P ₂ â€dependent signaling. FASEB Journal, 2020, 34, 3932-3942.	0.2	8
59	Renal mesangial cells: moving on sphingosine kinase-1. British Journal of Pharmacology, 2007, 150, 255-257.	2.7	7
60	Dissecting Gq/11-Mediated Plasma Membrane Translocation of Sphingosine Kinase-1. Cells, 2020, 9, 2201.	1.8	6
61	The sphingosine kinase 1 activator, K6PC-5, attenuates Ebola virus infection. IScience, 2021, 24, 102266.	1.9	6
62	cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacologyâ€"tribute to Karl H. Jakobs. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 887-911.	1.4	5
63	The WD40 repeat protein, WDR36, orchestrates sphingosine kinase-1 recruitment and phospholipase $C-\hat{l}^2$ activation by Gq-coupled receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158704.	1.2	5
64	Mouse Liver Compensates Loss of Sgpl1 by Secretion of Sphingolipids into Blood and Bile. International Journal of Molecular Sciences, 2021, 22, 10617.	1.8	4
65	Cis-4-methylsphingosine is a sphingosine-1-phosphate receptor modulator. Biochemical Pharmacology, 2011, 81, 617-625.	2.0	3
66	S1P-lyase deficiency uncouples ganglioside formation – Potential contribution to tumorigenic capacity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158708.	1.2	3
67	Lysophospholipids., 2008,, 710-716.		3
68	Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration. Biological Chemistry, 2015, 396, 803-812.	1.2	1
69	Lysophosphatidic Acid. , 2021, , 1-5.		0
70	Lysophospholipids., 2021,, 1-3.		0
71	The Sphingosine Kinase-1 Activator, K6PC-5, Attenuates the Ebola Virus Infection and the Virus Induced Cell Death. SSRN Electronic Journal, 0, , .	0.4	0
72	Sphingosine-1-Phosphate., 2021, , 1466-1471.		0