Changjin Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7777657/publications.pdf

Version: 2024-02-01

94 papers

6,794 citations

50276 46 h-index 80 g-index

94 all docs 94 docs citations

times ranked

94

4786 citing authors

#	Article	IF	CITATIONS
1	Solid-phase impregnation promotes Ce doping in TiO2 for boosted denitration of CeO2/TiO2 catalysts. Chinese Chemical Letters, 2022, 33, 935-938.	9.0	15
2	Enhancing low-temperature NH3-SCR performance of Fe–Mn/CeO2 catalyst by Al2O3 modification. Journal of Rare Earths, 2022, 40, 1454-1461.	4.8	26
3	Effect of different introduction methods of cerium and tin on the properties of titanium-based catalysts for the selective catalytic reduction of NO by NH3. Journal of Colloid and Interface Science, 2022, 613, 320-336.	9.4	11
4	Greener and higher conversion of esterification via interfacial photothermal catalysis. Nature Sustainability, 2022, 5, 348-356.	23.7	29
5	Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance. Chemical Engineering Journal, 2022, 445, 136530.	12.7	20
6	Insight into the SO2 resistance mechanism on \hat{I}^3 -Fe2O3 catalyst in NH3-SCR reaction: A collaborated experimental and DFT study. Applied Catalysis B: Environmental, 2021, 281, 119544.	20.2	107
7	Activity enhancement of WO3 modified FeTiO catalysts for the selective catalytic reduction of NO by NH3. Catalysis Today, 2021, 375, 614-622.	4.4	13
8	Pilot test of environment-friendly catalysts for the DeNO _x of low-temperature flue gas from a coal-fired plant. Catalysis Science and Technology, 2021, 11, 3164-3175.	4.1	3
9	The effects of dopant on catalytic activity of Pd/mesoporous alumina for toluene oxidation. Research on Chemical Intermediates, 2021, 47, 1239-1251.	2.7	1
10	Solvent-free elaboration of Ni-doped MnOx catalysts with high performance for NH3-SCR in low and medium temperature zones. Molecular Catalysis, 2021, 501, 111376.	2.0	7
11	Insight into the activity and SO2 tolerance of hierarchically ordered MnFe1-Î'CoÎ'Ox ternary oxides for low-temperature selective catalytic reduction of NOx with NH3. Journal of Catalysis, 2021, 395, 195-209.	6.2	50
12	One-Pot Synthesis of CeO2 Modified SBA-15 With No Pore Clogging for NO Reduction by CO. Frontiers in Environmental Chemistry, 2021, 2, .	1.6	2
13	Construction of Fe2O3 loaded and mesopore confined thin-layer titania catalyst for efficient NH3-SCR of NOx with enhanced H2O/SO2 tolerance. Applied Catalysis B: Environmental, 2021, 287, 119982.	20.2	64
14	Activating low-temperature NH3-SCR catalyst by breaking the strong interface between acid and redox sites: A case of model Ce2(SO4)3-CeO2 study. Journal of Catalysis, 2021, 399, 212-223.	6.2	61
15	Effects of different methods of introducing Mo on denitration performance and anti-SO2 poisoning performance of CeO2. Chinese Journal of Catalysis, 2021, 42, 1488-1499.	14.0	19
16	Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review. Applied Catalysis B: Environmental, 2021, 297, 120388.	20.2	120
17	Enhanced low-temperature NH3-SCR performance of CeTiO catalyst via surface Mo modification. Chinese Journal of Catalysis, 2020, 41, 364-373.	14.0	44
18	Surface configuration modulation for FeO -CeO2/ \hat{I}^3 -Al2O3 catalysts and its influence in CO oxidation. Journal of Catalysis, 2020, 386, 139-150.	6.2	20

#	Article	IF	Citations
19	High Resistance of SO2 and H2O over Monolithic Mn-Fe-Ce-Al-O Catalyst for Low Temperature NH3-SCR. Catalysts, 2020, 10, 1329.	3.5	8
20	Pt Deposites on TiO2 for Photocatalytic H2 Evolution: Pt Is Not Only the Cocatalyst, but Also the Defect Repair Agent. Catalysts, 2020, 10, 1047.	3.5	12
21	Unravelling the structure sensitivity of CuO/SiO ₂ catalysts in the NO + CO reaction. Catalysis Science and Technology, 2020, 10, 3848-3856.	4.1	7
22	The dual effects of ammonium bisulfate on the selective catalytic reduction of NO with NH3 over Fe2O3-WO3 catalyst confined in MCM-41. Chemical Engineering Journal, 2020, 389, 124271.	12.7	24
23	Influence of CeO2 loading on structure and catalytic activity for NH3-SCR over TiO2-supported CeO2. Journal of Rare Earths, 2020, 38, 883-890.	4.8	42
24	Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NOx with enhanced SO2/H2O tolerance. Journal of Hazardous Materials, 2020, 396, 122592.	12.4	79
25	Getting insight into the effect of CuO on red mud for the selective catalytic reduction of NO by NH3. Journal of Hazardous Materials, 2020, 396, 122459.	12.4	38
26	Composite catalytic systems: A strategy for developing the low temperature NH3-SCR catalysts with satisfactory SO2 and H2O tolerance. Catalysis Today, 2019, 327, 235-245.	4.4	40
27	Insights into the precursor effect on the surface structure of γ-Al2O3 and NO + CO catalytic performance of CO-pretreated CuO/MnOx/γ-Al2O3 catalysts. Journal of Colloid and Interface Science, 2019, 554, 611-618.	9.4	15
28	Pore Size Expansion Accelerates Ammonium Bisulfate Decomposition for Improved Sulfur Resistance in Low-Temperature NH ₃ -SCR. ACS Applied Materials & Interfaces, 2019, 11, 4900-4907.	8.0	81
29	Doping effect of Sm on the TiO ₂ /CeSmO _x catalyst in the NH ₃ -SCR reaction: structure–activity relationship, reaction mechanism and SO ₂ tolerance. Catalysis Science and Technology, 2019, 9, 3554-3567.	4.1	46
30	Cavity size dependent SO2 resistance for NH3-SCR of hollow structured CeO2-TiO2 catalysts. Catalysis Communications, 2019, 128, 105719.	3.3	38
31	Surface hydroxylated hematite promotes photoinduced hole transfer for water oxidation. Journal of Materials Chemistry A, 2019, 7, 8050-8054.	10.3	27
32	Catalytic removal NO by CO over LaNi0.5M0.5O3 (M = Co, Mn, Cu) perovskite oxide catalysts: Tune surface chemical composition to improve N2 selectivity. Chemical Engineering Journal, 2019, 369, 511-521.	12.7	96
33	Enhancing the deNO performance of MnO /CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification. Chemical Engineering Journal, 2019, 369, 46-56.	12.7	153
34	Improving the denitration performance and K-poisoning resistance of the V2O5-WO3/TiO2 catalyst by Ce4+ and Zr4+ co-doping. Chinese Journal of Catalysis, 2019, 40, 95-104.	14.0	50
35	Effect of Ti4+ and Sn4+ co-incorporation on the catalytic performance of CeO2-MnO catalyst for low temperature NH3-SCR. Applied Surface Science, 2019, 476, 283-292.	6.1	7 5
36	Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Applied Catalysis B: Environmental, 2019, 244, 671-683.	20.2	294

#	Article	IF	CITATIONS
37	Highly selective catalytic reduction of NOx by MnOx–CeO2–Al2O3 catalysts prepared by self-propagating high-temperature synthesis. Journal of Environmental Sciences, 2019, 75, 124-135.	6.1	31
38	Synthesis of CrOx/C catalysts for low temperature NH3-SCR with enhanced regeneration ability in the presence of SO2. RSC Advances, 2018, 8, 3858-3868.	3.6	20
39	Nonmetal element doped g-C ₃ N ₄ with enhanced H ₂ evolution under visible light irradiation. Journal of Materials Research, 2018, 33, 1268-1278.	2.6	35
40	Effect of precursors on the structure and activity of CuO-CoOx \hat{l}^3 -Al2O3 catalysts for NO reduction by CO. Journal of Colloid and Interface Science, 2018, 509, 334-345.	9.4	45
41	Synthesis of Both Powdered and Preformed MnO <i>_x(i>–CeO₂–Al₂O₃Catalysts by Self-Propagating High-Temperature Synthesis for the Selective Catalytic Reduction of NO<i>_x</i>i>with NH₃, ACS Omega, 2018, 3, 5692-5703.</i>	3.5	17
42	Mo doping as an effective strategy to boost low temperature NH3-SCR performance of CeO2/TiO2 catalysts. Catalysis Communications, 2018, 114, 10-14.	3.3	44
43	Solid state preparation of NiO-CeO 2 catalyst for NO reduction. Catalysis Today, 2017, 281, 575-582.	4.4	51
44	Construction of hybrid multi-shell hollow structured CeO ₂ â€"MnO _x materials for selective catalytic reduction of NO with NH ₃ . RSC Advances, 2017, 7, 5989-5999.	3.6	28
45	Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2017, 207, 366-375.	20.2	156
46	Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite. Applied Catalysis B: Environmental, 2017, 218, 51-59.	20.2	165
47	Novel MnO -CeO2 nanosphere catalyst for low-temperature NH3-SCR. Catalysis Communications, 2017, 100, 98-102.	3.3	36
48	Catalytic performance of highly dispersed WO 3 loaded on CeO 2 in the selective catalytic reduction of NO by NH 3. Chinese Journal of Catalysis, 2017, 38, 1749-1758.	14.0	27
49	Migration of copper species in Ce _x Cu _{1â^3x} O ₂ catalyst driven by thermal treatment and the effect on CO oxidation. Physical Chemistry Chemical Physics, 2017, 19, 21840-21847.	2.8	33
50	Comparative Study of Different Doped Metal Cations on the Reduction, Acidity, and Activity of Fe ₉ M ₁ O _{<i>x</i>} (M = Ti ⁴⁺ , Ce ^{4+/3+} ,) Tj ETQq Research, 2017, 56, 12101-12110.	0	'/Qyerlock 10
51	Influence of different impregnation modes on the properties of CuO CeO 2 γ-Al 2 O 3 catalysts for NO reduction by CO. Applied Surface Science, 2017, 426, 279-286.	6.1	31
52	A general and inherent strategy to improve the water tolerance of low temperature NH3-SCR catalysts via trace SiO2 deposition. Catalysis Communications, 2016, 84, 75-79.	3.3	35
53	Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH ₃ . Catalysis Science and Technology, 2016, 6, 1248-1264.	4.1	293
54	Engineering the Cu2O–reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light. Applied Catalysis B: Environmental, 2016, 181, 495-503.	20.2	163

#	Article	IF	CITATIONS
55	Influence of molar ratio and calcination temperature on the properties of Ti Sn1â´O2 supporting copper oxide for CO oxidation. Applied Catalysis B: Environmental, 2016, 180, 451-462.	20.2	77
56	Effects of different manganese precursors as promoters on catalytic performance of CuO–MnO _x /TiO ₂ catalysts for NO removal by CO. Physical Chemistry Chemical Physics, 2015, 17, 15996-16006.	2.8	49
57	Mesoporous NiO–CeO2 catalysts for CO oxidation: Nickel content effect and mechanism aspect. Applied Catalysis A: General, 2015, 494, 77-86.	4.3	99
58	Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnO /CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Applied Catalysis A: General, 2015, 495, 206-216.	4.3	189
59	Sulfated Temperature Effects on the Catalytic Activity of CeO ₂ in NH ₃ -Selective Catalytic Reduction Conditions. Journal of Physical Chemistry C, 2015, 119, 1155-1163.	3.1	128
60	Improved low temperature NH ₃ -SCR performance of FeMnTiO _x mixed oxide with CTAB-assisted synthesis. Chemical Communications, 2015, 51, 3470-3473.	4.1	69
61	Promotional effect of doping SnO ₂ into TiO ₂ over a CeO ₂ /TiO ₂ catalyst for selective catalytic reduction of NO by NH ₃ . Catalysis Science and Technology, 2015, 5, 2188-2196.	4.1	103
62	Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2015, 165, 589-598.	20.2	307
63	Engineering the NiO/CeO ₂ interface to enhance the catalytic performance for CO oxidation. RSC Advances, 2015, 5, 98335-98343.	3.6	87
64	Synthesis, characterization and catalytic performance of FeMnTiOx mixed oxides catalyst prepared by a CTAB-assisted process for mid-low temperature NH3-SCR. Applied Catalysis A: General, 2015, 505, 235-242.	4.3	82
65	Crystal-plane effects on surface and catalytic properties of Cu2O nanocrystals for NO reduction by CO. Applied Catalysis A: General, 2015, 505, 334-343.	4.3	65
66	Comparative study on the catalytic CO oxidation properties of CuO/CeO2 catalysts prepared by solid state and wet impregnation. Chinese Journal of Catalysis, 2014, 35, 1347-1358.	14.0	55
67	Influence of MnO2 modification methods on the catalytic performance of CuO/CeO2 for NO reduction by CO. Journal of Rare Earths, 2014, 32, 131-138.	4.8	53
68	Improving the dispersion of CeO2 on \hat{I}^3 -Al2O3 to enhance the catalytic performances of CuO/CeO2/ \hat{I}^3 -Al2O3 catalysts for NO removal by CO. Catalysis Communications, 2014, 51, 95-99.	3.3	33
69	Promotional effect of CO pretreatment on CuO/CeO2 catalyst for catalytic reduction of NO by CO. Journal of Rare Earths, 2014, 32, 139-145.	4.8	42
70	Correlation between the physicochemical properties and catalytic performances of CexSn1–xO2 mixed oxides for NO reduction by CO. Applied Catalysis B: Environmental, 2014, 144, 152-165.	20.2	224
71	Direct synthesis of Ti-SBA-15 in the self-generated acidic environment and its photodegradation of Rhodamine B. Journal of Porous Materials, 2014, 21, 63-70.	2.6	7
72	Effect of CO-pretreatment on the CuO–V ₂ O ₅ ∫î³-Al ₂ O ₃ catalyst for NO reduction by CO. Catalysis Science and Technology, 2014, 4, 4416-4425.	4.1	88

#	Article	IF	CITATIONS
73	Influence of CeO ₂ modification on the properties of Fe ₂ O ₃ –Ti _{0.5} Sn _{0.5} O ₂ catalyst for NO reduction by CO. Catalysis Science and Technology, 2014, 4, 482-493.	4.1	59
74	Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature. Applied Catalysis B: Environmental, 2014, 150-151, 315-329.	20.2	221
75	Research progress on the catalytic elimination of atmospheric molecular contaminants over supported metal-oxide catalysts. Catalysis Science and Technology, 2014, 4, 2814.	4.1	39
76	Efficient fabrication of active CuO-CeO2/SBA-15 catalysts for preferential oxidation of CO by solid state impregnation. Applied Catalysis B: Environmental, 2014, 146, 201-212.	20.2	105
77	Tailoring copper valence states in CuOδſγ-Al2O3 catalysts by an in situ technique induced superior catalytic performance for simultaneous elimination of NO and CO. Physical Chemistry Chemical Physics, 2013, 15, 14945.	2.8	29
78	<i>In Situ</i> Loading Transition Metal Oxide Clusters on TiO ₂ Nanosheets As Co-catalysts for Exceptional High Photoactivity. ACS Catalysis, 2013, 3, 2052-2061.	11.2	151
79	Anion-Assisted Synthesis of TiO ₂ Nanocrystals with Tunable Crystal Forms and Crystal Facets and Their Photocatalytic Redox Activities in Organic Reactions. Journal of Physical Chemistry C, 2013, 117, 18578-18587.	3.1	92
80	Crystal-Plane Effects on the Catalytic Properties of Au/TiO ₂ . ACS Catalysis, 2013, 3, 2768-2775.	11.2	120
81	Investigation of the physicochemical properties and catalytic activities of Ce _{0.67} M _{0.33} O ₂ (M = Zr ⁴⁺ , Ti ⁴⁺ ,) Tj ETQq1 1 688-698.	0.784314 4.1	rgBT_/Overlo
82	A comparative study of different doped metal cations on the reduction, adsorption and activity of CuO/Ce0.67M0.33O2 (M=Zr4+, Sn4+, Ti4+) catalysts for NO+CO reaction. Applied Catalysis B: Environmental, 2013, 130-131, 293-304.	20.2	137
83	NO reduction by CO over CuO–CeO2 catalysts: effect of preparation methods. Catalysis Science and Technology, 2013, 3, 1355.	4.1	148
84	Treatment induced remarkable enhancement of low-temperature activity and selectivity of copper-based catalysts for NO reduction. Catalysis Science and Technology, 2013, 3, 1547.	4.1	20
85	Investigations of surface VOx species and their contributions to activities of VOx/Ti0.5Sn0.5O2 catalysts toward selective catalytic reduction of NO by NH3. Applied Catalysis A: General, 2012, 431-432, 126-136.	4.3	19
86	Influence of cerium modification methods on catalytic performance of Au/mordenite catalysts in CO oxidation. Applied Catalysis B: Environmental, 2012, 127, 234-245.	20.2	26
87	Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation. Applied Catalysis B: Environmental, 2012, 119-120, 308-320.	20.2	348
88	Synthesis, characterization, and catalytic performance of copper-containing SBA-15 in the phenol hydroxylation. Journal of Colloid and Interface Science, 2012, 380, 16-24.	9.4	63
89	Direct synthesis, characterization and catalytic performance of bimetallic Fe–Mo-SBA-15 materials in selective catalytic reduction of NO with NH3. Microporous and Mesoporous Materials, 2012, 151, 44-55.	4.4	46
90	Determination of catalytic oxidation products of phenol by RP-HPLC. Research on Chemical Intermediates, 2012, 38, 549-558.	2.7	22

#	Article	lF	CITATION
91	An efficient strategy for highly loaded, well dispersed and thermally stable metal oxide catalysts. Catalysis Communications, 2011, 12, 1075-1078.	3.3	22
92	Textural, structural, and morphological characterizations and catalytic activity of nanosized CeO2–MOx (M=Mg2+, Al3+, Si4+) mixed oxides for CO oxidation. Journal of Colloid and Interface Science, 2011, 354, 341-352.	9.4	72
93	Controllable Synthesis of Pure-Phase Rare-Earth Orthoferrites Hollow Spheres with a Porous Shell and Their Catalytic Performance for the CO + NO Reaction. Chemistry of Materials, 2010, 22, 4879-4889.	6.7	75
94	Efficient fabrication and photocatalytic properties of TiO2 hollow spheres. Catalysis Communications, 2009, 10, 650-654.	3.3	72