Nachiket Vaze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/777736/publications.pdf

Version: 2024-02-01

139 papers 6,528 citations

44069 48 h-index 76900 74 g-index

140 all docs

140 docs citations

140 times ranked

6608 citing authors

#	Article	IF	CITATIONS
1	Release of particulate matter from nano-enabled building materials (NEBMs) across their lifecycle: Potential occupational health and safety implications. Journal of Hazardous Materials, 2022, 422, 126771.	12.4	17
2	Quaternized chitosan as a biopolymer sanitizer for leafy vegetables: synthesis, characteristics, and traditional vs. dry nano-aerosol applications. Food Chemistry, 2022, 378, 132056.	8.2	7
3	Printer center nanoparticles alter the DNA repair capacity of human bronchial airway epithelial cells. NanoImpact, 2022, 25, 100379.	4.5	6
4	Elevated Urinary Biomarkers of Oxidative Damage in Photocopier Operators following Acute and Chronic Exposures. Nanomaterials, 2022, 12, 715.	4.1	7
5	Using engineered water nanostructures (EWNS) for wound disinfection: Case study of Acinetobacter baumannii inactivation on skin and the inhibition of biofilm formation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102537.	3.3	1
6	Association of nanoparticle exposure with serum metabolic disorders of healthy adults in printing centers. Journal of Hazardous Materials, 2022, 432, 128710.	12.4	6
7	Differential modulation of endothelial cytoplasmic protrusions after exposure to graphene-family nanomaterials. NanoImpact, 2022, 26, 100401.	4.5	3
8	Enhancing Agrichemical Delivery and Plant Development with Biopolymer-Based Stimuli Responsive Core–Shell Nanostructures. ACS Nano, 2022, 16, 6034-6048.	14.6	35
9	E-Cigarette (E-Cig) Liquid Composition and Operational Voltage Define the <i>In Vitro</i> Toxicity of Δ8Tetrahydrocannabinol/Vitamin E Acetate (Δ8THC/VEA) E-Cig Aerosols. Toxicological Sciences, 2022, 187, 279-297.	3.1	3
10	Inactivating SARS-CoV-2 Surrogates on Surfaces Using Engineered Water Nanostructures Incorporated with Nature Derived Antimicrobials. Nanomaterials, 2022, 12, 1735.	4.1	2
11	Biological Impacts of Reduced Graphene Oxide Affected by Protein Corona Formation. Chemical Research in Toxicology, 2022, 35, 1244-1256.	3.3	11
12	Sustainable Nutrient Substrates for Enhanced Seedling Development in Hydroponics. ACS Sustainable Chemistry and Engineering, 2022, 10, 8506-8516.	6.7	9
13	E-cigarette vaping associated acute lung injury (EVALI): state of science and future research needs. Critical Reviews in Toxicology, 2022, 52, 188-220.	3.9	12
14	Effects of ingested nanomaterials on tissue distribution of co-ingested zinc and iron in normal and zinc-deficient mice. NanoImpact, 2021, 21, 100279.	4.5	2
15	An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments. Science of the Total Environment, 2021, 756, 143553.	8.0	47
16	A novel antimicrobial technology to enhance food safety and quality of leafy vegetables using engineered water nanostructures. Environmental Science: Nano, 2021, 8, 514-526.	4.3	10
17	Effects of ingested nanocellulose and nanochitosan materials on carbohydrate digestion and absorption in an <i>in vitro</i> small intestinal epithelium model. Environmental Science: Nano, 2021, 8, 2554-2568.	4.3	6
18	High-Throughput Screening Platform for Nanoparticle-Mediated Alterations of DNA Repair Capacity. ACS Nano, 2021, 15, 4728-4746.	14.6	14

#	Article	IF	CITATIONS
19	Aerosol transmission of SARSâ€CoVâ€2 by children and adults during the COVIDâ€19 pandemic. Pediatric Pulmonology, 2021, 56, 1389-1394.	2.0	27
20	Chronic upper airway and systemic inflammation from copier emitted particles in healthy operators at six Singaporean workplaces. NanoImpact, 2021, 22, 100325.	4.5	10
21	Fluorescently Labeled Cellulose Nanofibers for Environmental Health and Safety Studies. Nanomaterials, 2021, 11, 1015.	4.1	13
22	Co-exposure to boscalid and TiO2 (E171) or SiO2 (E551) downregulates cell junction gene expression in small intestinal epithelium cellular model and increases pesticide translocation. NanoImpact, 2021, 22, 100306.	4.5	12
23	New Multiscale Characterization Methodology for Effective Determination of Isolation–Structure–Function Relationship of Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 2021, 9, 669537.	4.1	7
24	Fate, cytotoxicity and cellular metabolomic impact of ingested nanoscale carbon dots using simulated digestion and a triculture small intestinal epithelial model. NanoImpact, 2021, 23, 100349.	4.5	10
25	Silica encapsulation of ZnO nanoparticles reduces their toxicity for cumulus cell-oocyte-complex expansion. Particle and Fibre Toxicology, 2021, 18, 33.	6.2	9
26	Predictors of indoor radon levels in the Midwest United States. Journal of the Air and Waste Management Association, 2021, 71, 1515-1528.	1.9	4
27	Transcorneal delivery of topically applied silver nanoparticles does not delay epithelial wound healing. NanoImpact, 2021, 24, 100352.	4.5	7
28	Biotransformations and cytotoxicity of graphene and inorganic two-dimensional nanomaterials using simulated digestions coupled with a triculture <i>in vitro</i> model of the human gastrointestinal epithelium. Environmental Science: Nano, 2021, 8, 3233-3249.	4.3	10
29	Enzyme- and Relative Humidity-Responsive Antimicrobial Fibers for Active Food Packaging. ACS Applied Materials & Enzyme (1988) Materials & Enzyme (1	8.0	33
30	Oxidized carbon black nanoparticles induce endothelial damage through C-X-C chemokine receptor 3-mediated pathway. Redox Biology, 2021, 47, 102161.	9.0	7
31	Toxicity, uptake, and nuclear translocation of ingested micro-nanoplastics in an in vitro model of the small intestinal epithelium. Food and Chemical Toxicology, 2021, 158, 112609.	3.6	31
32	Synthesis of Precision Gold Nanoparticles Using Turkevich Method. KONA Powder and Particle Journal, 2020, 37, 224-232.	1.7	143
33	Evaluation of the cytotoxic and cellular proteome impacts of food-grade TiO2 (E171) using simulated gastrointestinal digestions and a tri-culture small intestinal epithelial model. NanoImpact, 2020, 17, 100202.	4.5	30
34	Physicochemical and Morphological Transformations of Chitosan Nanoparticles across the Gastrointestinal Tract and Cellular Toxicity in an In Vitro Model of the Small Intestinal Epithelium. Journal of Agricultural and Food Chemistry, 2020, 68, 358-368.	5.2	19
35	Effects of ingested food-grade titanium dioxide, silicon dioxide, iron (III) oxide and zinc oxide nanoparticles on an in vitro model of intestinal epithelium: Comparison between monoculture vs. a mucus-secreting coculture model. NanoImpact, 2020, 17, 100209.	4.5	24
36	Pilot deep RNA sequencing of worker blood samples from Singapore printing industry for occupational risk assessment. NanoImpact, 2020, 19, 100248.	4.5	8

#	Article	IF	CITATIONS
37	Development of Biodegradable and Antimicrobial Electrospun Zein Fibers for Food Packaging. ACS Sustainable Chemistry and Engineering, 2020, 8, 15354-15365.	6.7	63
38	A high-throughput method to characterize the gut bacteria growth upon engineered nanomaterial treatment. Environmental Science: Nano, 2020, 7, 3155-3166.	4.3	2
39	Cytotoxicity and cellular proteome impact of cellulose nanocrystals using simulated digestion and an in vitro small intestinal epithelium cellular model. NanoImpact, 2020, 20, 100269.	4.5	10
40	Lipid and protein corona of food-grade TiO2 nanoparticles in simulated gastrointestinal digestion. NanoImpact, 2020, 20, 100272.	4.5	32
41	Enhancing Agrichemical Delivery and Seedling Development with Biodegradable, Tunable, Biopolymer-Based Nanofiber Seed Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 9537-9548.	6.7	59
42	Synthesis and Physicochemical Transformations of Sizeâ€Sorted Graphene Oxide during Simulated Digestion and Its Toxicological Assessment against an In Vitro Model of the Human Intestinal Epithelium. Small, 2020, 16, e1907640.	10.0	20
43	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.	31.5	69
44	Human brain microvascular endothelial cell pairs model tissue-level blood–brain barrier function. Integrative Biology (United Kingdom), 2020, 12, 64-79.	1.3	8
45	Safeguarding human and planetary health demands a fertilizer sector transformation. Plants People Planet, 2020, 2, 302-309.	3.3	31
46	Effects of ingested nanocellulose on intestinal microbiota and homeostasis in Wistar Han rats. NanoImpact, 2020, 18, 100216.	4.5	44
47	Occupational Inhalation Exposures to Nanoparticles at Six Singapore Printing Centers. Environmental Science & Environmental Sc	10.0	36
48	Mapping 2D- and 3D-distributions of metal/metal oxide nanoparticles within cleared human ex vivo skin tissues. NanoImpact, 2020, 17, 100208.	4.5	11
49	Prediction of protein corona on nanomaterials by machine learning using novel descriptors. NanoImpact, 2020, 17, 100207.	4.5	62
50	Inhalation of printer-emitted particles impairs cardiac conduction, hemodynamics, and autonomic regulation and induces arrhythmia and electrical remodeling in rats. Particle and Fibre Toxicology, 2020, 17, 7.	6.2	19
51	Inflammation Increases Susceptibility of Human Small Airway Epithelial Cells to Pneumonic Nanotoxicity. Small, 2020, 16, 2000963.	10.0	15
52	Co-exposure to the food additives SiO ₂ (E551) or TiO ₂ (E171) and the pesticide boscalid increases cytotoxicity and bioavailability of the pesticide in a tri-culture small intestinal epithelium model: potential health implications. Environmental Science: Nano, 2019, 6, 2786-2800.	4.3	29
53	Small-Intestine-Specific Delivery of Antidiabetic Extracts from <i>Withania coagulans</i> Using Polysaccharide-Based Enteric-Coated Nanoparticles. ACS Omega, 2019, 4, 12049-12057.	3.5	21
54	Iron Oxide Nanoparticle-Induced Neoplastic-Like Cell Transformation <i>in Vitro</i> Is Reduced with a Protective Amorphous Silica Coating. Chemical Research in Toxicology, 2019, 32, 2382-2397.	3.3	10

#	Article	IF	CITATIONS
55	Comprehensive Assessment of Short-Lived ROS and H ₂ O ₂ in Laser Printer Emissions: Assessing the Relative Contribution of Metal Oxides and Organic Constituents. Environmental Science & Environmental Sci	10.0	25
56	Toxicological effects of ingested nanocellulose in <i>in vitro</i> intestinal epithelium and <i>in vivo</i> rat models. Environmental Science: Nano, 2019, 6, 2105-2115.	4.3	93
57	Dispersion preparation, characterization, and dosimetric analysis of cellulose nano-fibrils and nano-crystals: Implications for cellular toxicological studies. NanoImpact, 2019, 15, 100171.	4.5	25
58	Development & De	4.3	21
59	Inactivation of common hospital acquired pathogens on surfaces and in air utilizing engineered water nanostructures (EWNS) based nano-sanitizers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 234-242.	3.3	42
60	Inactivation of Hand Hygiene-Related Pathogens Using Engineered Water Nanostructures. ACS Sustainable Chemistry and Engineering, 2019, 7, 19761-19769.	6.7	13
61	Integrated Transcriptomics, Metabolomics, and Lipidomics Profiling in Rat Lung, Blood, and Serum for Assessment of Laser Printer-Emitted Nanoparticle Inhalation Exposure-Induced Disease Risks. International Journal of Molecular Sciences, 2019, 20, 6348.	4.1	20
62	Thermal decomposition/incineration of nano-enabled coatings and effects of nanofiller/matrix properties and operational conditions on byproduct release dynamics: Potential environmental health implications. NanoImpact, 2019, 13, 44-55.	4.5	19
63	Scatter Enhanced Phase Contrast Microscopy for Discriminating Mechanisms of Active Nanoparticle Transport in Living Cells. Nano Letters, 2019, 19, 793-804.	9.1	17
64	Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NanoImpact, 2019, 13, 13-25.	4.5	77
65	A nano-carrier platform for the targeted delivery of nature-inspired antimicrobials using Engineered Water Nanostructures for food safety applications. Food Control, 2019, 96, 365-374.	5.5	37
66	Development of high throughput, high precision synthesis platforms and characterization methodologies for toxicological studies of nanocellulose. Cellulose, 2018, 25, 2303-2319.	4.9	45
67	Assessing electronic cigarette emissions: linking physico-chemical properties to product brand, e-liquid flavoring additives, operational voltage and user puffing patterns. Inhalation Toxicology, 2018, 30, 78-88.	1.6	55
68	An integrated electrolysis – electrospray – ionization antimicrobial platform using Engineered Water Nanostructures (EWNS) for food safety applications. Food Control, 2018, 85, 151-160.	5.5	34
69	Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: Implications for stability, particle kinetics, dosimetry and toxicity. NanoImpact, 2018, 10, 81-86.	4.5	47
70	Development of reference metal and metal oxide engineered nanomaterials for nanotoxicology research using high throughput and precision flame spray synthesis approaches. NanoImpact, 2018, 10, 26-37.	4.5	35
71	Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. Journal of Hazardous Materials, 2018, 344, 549-557.	12.4	77
72	Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2018, 410, 6155-6164.	3.7	43

#	Article	IF	CITATIONS
73	Nanoâ€TiO ₂ Drives Epithelial–Mesenchymal Transition in Intestinal Epithelial Cancer Cells. Small, 2018, 14, e1800922.	10.0	53
74	Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Particle and Fibre Toxicology, 2018, 15, 29.	6.2	128
75	Dissolution Behavior and Biodurability of Ingested Engineered Nanomaterials in the Gastrointestinal Environment. ACS Nano, 2018, 12, 8115-8128.	14.6	81
76	ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Particle and Fibre Toxicology, 2018, 15, 6.	6.2	65
77	Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials. Analytical and Bioanalytical Chemistry, 2018, 410, 6141-6154.	3.7	66
78	Reducing Intestinal Digestion and Absorption of Fat Using a Nature-Derived Biopolymer: Interference of Triglyceride Hydrolysis by Nanocellulose. ACS Nano, 2018, 12, 6469-6479.	14.6	148
79	Development of high throughput, high precision synthesis platforms and characterization methodologies for toxicological studies of nanocellulose. Cellulose, 2018, 25, 2303-2319.	4.9	13
80	Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nature Protocols, 2017, 12, 355-371.	12.0	224
81	Toxicological implications of released particulate matter during thermal decomposition of nano-enabled thermoplastics. NanoImpact, 2017, 5, 29-40.	4.5	24
82	Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environmental Science: Nano, 2017, 4, 767-781.	4.3	202
83	Indoor Air Quality in Photocopy Centers, Nanoparticle Exposures at Photocopy Workstations, and the Need for Exposure Controls. Annals of Occupational Hygiene, 2017, 61, 110-122.	1.9	14
84	Nanofiller Presence Enhances Polycyclic Aromatic Hydrocarbon (PAH) Profile on Nanoparticles Released during Thermal Decomposition of Nano-enabled Thermoplastics: Potential Environmental Health Implications. Environmental Science & Enchology, 2017, 51, 5222-5232.	10.0	26
85	Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in Colloid and Interface Science, 2017, 246, 165-180.	14.7	100
86	Evaluation of tumorigenic potential of CeO2 and Fe2O3 engineered nanoparticles by a human cell in vitro screening model. NanoImpact, 2017, 6, 39-54.	4.5	25
87	Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: state of science and future research needs. Critical Reviews in Toxicology, 2017, 47, 683-709.	3.9	56
88	Cold plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe. International Journal of Food Microbiology, 2017, 249, 53-60.	4.7	87
89	Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality. Current Opinion in Biotechnology, 2017, 44, 87-93.	6.6	130
90	Synergistic effects of engineered nanoparticles and organics released from laser printers using nano-enabled toners: potential health implications from exposures to the emitted organic aerosol. Environmental Science: Nano, 2017, 4, 2144-2156.	4.3	26

#	Article	IF	CITATIONS
91	Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions. Nanotoxicology, 2017, 11, 1087-1101.	3.0	29
92	Protein corona: implications for nanoparticle interactions with pulmonary cells. Particle and Fibre Toxicology, 2017, 14, 42.	6.2	99
93	An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Particle and Fibre Toxicology, 2017, 14, 40.	6.2	112
94	Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology, 2016, 10, 1-11.	3.0	82
95	Effects of engineered nanomaterial exposure on macrophage innate immune function. NanoImpact, 2016, 2, 70-81.	4.5	34
96	End-of-life thermal decomposition of nano-enabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environmental Science: Nano, 2016, 3, 1293-1305.	4.3	31
97	The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact, 2016, 3-4, 47-57.	4.5	103
98	Development and characterization of electronic-cigarette exposure generation system (Ecig-EGS) for the physico-chemical and toxicological assessment of electronic cigarette emissions. Inhalation Toxicology, 2016, 28, 658-669.	1.6	37
99	Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS). Scientific Reports, 2016, 6, 21073.	3.3	60
100	Toxicological Assessment of CoO and La ₂ O ₃ Metal Oxide Nanoparticles in Human Small Airway Epithelial Cells. Toxicological Sciences, 2016, 150, 418-428.	3.1	30
101	Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications. Journal of Hazardous Materials, 2016, 305, 87-95.	12.4	55
102	Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: A case study of toxicological implications from nanomaterials released during consumer use. NanoImpact, 2016 , 1 , 1 - 8 .	4.5	41
103	Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation. Nanotoxicology, 2016, 10, 720-727.	3.0	32
104	<i>In vivo</i> epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles. Nanotoxicology, 2016, 10, 629-639.	3.0	83
105	NanoEHS – defining fundamental science needs: no easy feat when the simple itself is complex. Environmental Science: Nano, 2016, 3, 15-27.	4.3	53
106	Direct stimulation of human fibroblasts by nCeO2 in vitro is attenuated with an amorphous silica coating. Particle and Fibre Toxicology, 2015, 13, 23.	6.2	14
107	Advanced computational modeling for in vitro nanomaterial dosimetry. Particle and Fibre Toxicology, 2015, 12, 32.	6.2	131
108	Silica coating influences the corona and biokinetics of cerium oxide nanoparticles. Particle and Fibre Toxicology, 2015, 12, 31.	6.2	44

#	Article	IF	Citations
109	Linking Exposures of Particles Released From Nano-Enabled Products to Toxicology: An Integrated Methodology for Particle Sampling, Extraction, Dispersion, and Dosing. Toxicological Sciences, 2015, 146, 321-333.	3.1	38
110	Implications of <i>in vitro </i> dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials. Nanotoxicology, 2015, 9, 871-885.	3.0	63
111	Inactivation of Foodborne Microorganisms Using Engineered Water Nanostructures (EWNS). Environmental Science & Environmental S	10.0	70
112	Occupational exposure to nanoparticles at commercial photocopy centers. Journal of Hazardous Materials, 2015, 298, 351-360.	12.4	63
113	A critical review of <i>in vitro</i> dosimetry for engineered nanomaterials. Nanomedicine, 2015, 10, 3015-3032.	3.3	82
114	An integrated methodology for the assessment of environmental health implications during thermal decomposition of nano-enabled products. Environmental Science: Nano, 2015, 2, 262-272.	4.3	39
115	<i>In Vitro</i> Toxicity and Epigenotoxicity of Different Types of Ambient Particulate Matter. Toxicological Sciences, 2015, 148, 473-487.	3.1	29
116	Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses. Toxicology and Applied Pharmacology, 2015, 288, 63-73.	2.8	58
117	Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model. Nanotoxicology, 2015, 9, 769-779.	3.0	45
118	Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential. Environmental Science: Nano, 2014, 1, 144.	4.3	85
119	Screening for oxidative damage by engineered nanomaterials: a comparative evaluation of FRAS and DCFH. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	20
120	Mycobacteria inactivation using Engineered Water Nanostructures (EWNS). Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1175-1183.	3.3	30
121	The yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. Environmental Science: Nano, 2014, 1, 406-428.	4.3	106
122	A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures. Environmental Science: Nano, 2014, 1, 15-26.	4.3	49
123	Capture, isolation and electrochemical detection of industrially-relevant engineered aerosol nanoparticles using poly (amic) acid, phase-inverted, nano-membranes. Journal of Hazardous Materials, 2014, 279, 365-374.	12.4	3
124	Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nature Communications, 2014, 5, 3514.	12.8	247
125	Real-Time Nanoparticle–Cell Interactions in Physiological Media by Atomic Force Microscopy. ACS Sustainable Chemistry and Engineering, 2014, 2, 1681-1690.	6.7	62
126	An integrated approach for the in vitro dosimetry of engineered nanomaterials. Particle and Fibre Toxicology, 2014, 11, 20.	6.2	184

#	Article	lF	CITATIONS
127	Bioavailability, distribution and clearance of tracheally instilled, gavaged or injected cerium dioxide nanoparticles and ionic cerium. Environmental Science: Nano, 2014, 1, 561-573.	4.3	62
128	Physicochemical and morphological characterisation of nanoparticles from photocopiers: implications for environmental health. Nanotoxicology, 2013, 7, 989-1003.	3.0	80
129	An <i>in vivo</i> and <iin i="" vitro<="">toxicological characterisation of realistic nanoscale CeO₂inhalation exposures. Nanotoxicology, 2013, 7, 1338-1350.</iin>	3.0	135
130	Interactions of engineered nanomaterials in physiological media and implications for <i>in vitro </i> i>dosimetry. Nanotoxicology, 2013, 7, 417-431.	3.0	190
131	A novel method for bacterial inactivation using electrosprayed water nanostructures. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	30
132	An advanced numerical model for the assessment of airborne transmission of influenza in bus microenvironments. Building and Environment, 2012, 47, 67-75.	6.9	102
133	Experimental and numerical investigation of micro-environmental conditions in public transportation buses. Building and Environment, 2010, 45, 2077-2088.	6.9	59
134	Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies. Inhalation Toxicology, 2010, 22, 107-116.	1.6	55
135	Development and Evaluation of a High Loading PM2.5Speciation Sampler. Aerosol Science and Technology, 2004, 38, 111-119.	3.1	21
136	Effects of Physicochemical Properties of Ultrafine Particles on the Performance of an Ultrafine Particle Concentrator. Aerosol Science and Technology, 2004, 38, 37-45.	3.1	19
137	Development of a High-Volume Concentrated Ambient Particles System (CAPS) for Human and Animal Inhalation Toxicological Studies. Inhalation Toxicology, 2003, 15, 111-129.	1.6	29
138	Development and Laboratory Performance Evaluation of a Personal Cascade Impactor. Journal of the Air and Waste Management Association, 2002, 52, 1230-1237.	1.9	38
139	Development and Evaluation of an Impactor for a PM _{2.5} Speciation Sampler. Journal of the Air and Waste Management Association, 2001, 51, 514-523.	1.9	27