
Nachiket Vaze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/777736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nature Communications, 2014, 5, 3514.	12.8	247
2	Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nature Protocols, 2017, 12, 355-371.	12.0	224
3	Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environmental Science: Nano, 2017, 4, 767-781.	4.3	202
4	Interactions of engineered nanomaterials in physiological media and implications for <i>in vitro</i> dosimetry. Nanotoxicology, 2013, 7, 417-431.	3.0	190
5	An integrated approach for the in vitro dosimetry of engineered nanomaterials. Particle and Fibre Toxicology, 2014, 11, 20.	6.2	184
6	Reducing Intestinal Digestion and Absorption of Fat Using a Nature-Derived Biopolymer: Interference of Triglyceride Hydrolysis by Nanocellulose. ACS Nano, 2018, 12, 6469-6479.	14.6	148
7	Synthesis of Precision Gold Nanoparticles Using Turkevich Method. KONA Powder and Particle Journal, 2020, 37, 224-232.	1.7	143
8	An <i>in vivo</i> and <i>in vitro</i> toxicological characterisation of realistic nanoscale CeO ₂ inhalation exposures. Nanotoxicology, 2013, 7, 1338-1350.	3.0	135
9	Advanced computational modeling for in vitro nanomaterial dosimetry. Particle and Fibre Toxicology, 2015, 12, 32.	6.2	131
10	Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality. Current Opinion in Biotechnology, 2017, 44, 87-93.	6.6	130
11	Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Particle and Fibre Toxicology, 2018, 15, 29.	6.2	128
12	An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Particle and Fibre Toxicology, 2017, 14, 40.	6.2	112
13	The yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. Environmental Science: Nano, 2014, 1, 406-428.	4.3	106
14	The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact, 2016, 3-4, 47-57.	4.5	103
15	An advanced numerical model for the assessment of airborne transmission of influenza in bus microenvironments. Building and Environment, 2012, 47, 67-75.	6.9	102
16	Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in Colloid and Interface Science, 2017, 246, 165-180.	14.7	100
17	Protein corona: implications for nanoparticle interactions with pulmonary cells. Particle and Fibre Toxicology, 2017, 14, 42.	6.2	99
18	Toxicological effects of ingested nanocellulose in <i>in vitro</i> intestinal epithelium and <i>in vivo</i> rat models. Environmental Science: Nano, 2019, 6, 2105-2115.	4.3	93

#	Article	IF	CITATIONS
19	Cold plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe. International Journal of Food Microbiology, 2017, 249, 53-60.	4.7	87
20	Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential. Environmental Science: Nano, 2014, 1, 144.	4.3	85
21	<i>In vivo</i> epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles. Nanotoxicology, 2016, 10, 629-639.	3.0	83
22	Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology, 2016, 10, 1-11.	3.0	82
23	A critical review of <i>in vitro</i> dosimetry for engineered nanomaterials. Nanomedicine, 2015, 10, 3015-3032.	3.3	82
24	Dissolution Behavior and Biodurability of Ingested Engineered Nanomaterials in the Gastrointestinal Environment. ACS Nano, 2018, 12, 8115-8128.	14.6	81
25	Physicochemical and morphological characterisation of nanoparticles from photocopiers: implications for environmental health. Nanotoxicology, 2013, 7, 989-1003.	3.0	80
26	Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. Journal of Hazardous Materials, 2018, 344, 549-557.	12.4	77
27	Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NanoImpact, 2019, 13, 13-25.	4.5	77
28	Inactivation of Foodborne Microorganisms Using Engineered Water Nanostructures (EWNS). Environmental Science & Technology, 2015, 49, 3737-3745.	10.0	70
29	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.	31.5	69
30	Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials. Analytical and Bioanalytical Chemistry, 2018, 410, 6141-6154.	3.7	66
31	ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Particle and Fibre Toxicology, 2018, 15, 6.	6.2	65
32	Implications of <i>in vitro</i> dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials. Nanotoxicology, 2015, 9, 871-885.	3.0	63
33	Occupational exposure to nanoparticles at commercial photocopy centers. Journal of Hazardous Materials, 2015, 298, 351-360.	12.4	63
34	Development of Biodegradable and Antimicrobial Electrospun Zein Fibers for Food Packaging. ACS Sustainable Chemistry and Engineering, 2020, 8, 15354-15365.	6.7	63
35	Real-Time Nanoparticle–Cell Interactions in Physiological Media by Atomic Force Microscopy. ACS Sustainable Chemistry and Engineering, 2014, 2, 1681-1690.	6.7	62
36	Bioavailability, distribution and clearance of tracheally instilled, gavaged or injected cerium dioxide nanoparticles and ionic cerium. Environmental Science: Nano, 2014, 1, 561-573.	4.3	62

#	Article	IF	CITATIONS
37	Prediction of protein corona on nanomaterials by machine learning using novel descriptors. NanoImpact, 2020, 17, 100207.	4.5	62
38	Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS). Scientific Reports, 2016, 6, 21073.	3.3	60
39	Experimental and numerical investigation of micro-environmental conditions in public transportation buses. Building and Environment, 2010, 45, 2077-2088.	6.9	59
40	Enhancing Agrichemical Delivery and Seedling Development with Biodegradable, Tunable, Biopolymer-Based Nanofiber Seed Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 9537-9548.	6.7	59
41	Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses. Toxicology and Applied Pharmacology, 2015, 288, 63-73.	2.8	58
42	Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: state of science and future research needs. Critical Reviews in Toxicology, 2017, 47, 683-709.	3.9	56
43	Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies. Inhalation Toxicology, 2010, 22, 107-116.	1.6	55
44	Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications. Journal of Hazardous Materials, 2016, 305, 87-95.	12.4	55
45	Assessing electronic cigarette emissions: linking physico-chemical properties to product brand, e-liquid flavoring additives, operational voltage and user puffing patterns. Inhalation Toxicology, 2018, 30, 78-88.	1.6	55
46	NanoEHS – defining fundamental science needs: no easy feat when the simple itself is complex. Environmental Science: Nano, 2016, 3, 15-27.	4.3	53
47	Nanoâ€īiO ₂ Drives Epithelial–Mesenchymal Transition in Intestinal Epithelial Cancer Cells. Small, 2018, 14, e1800922.	10.0	53
48	A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures. Environmental Science: Nano, 2014, 1, 15-26.	4.3	49
49	Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: Implications for stability, particle kinetics, dosimetry and toxicity. NanoImpact, 2018, 10, 81-86.	4.5	47
50	An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments. Science of the Total Environment, 2021, 756, 143553.	8.0	47
51	Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model. Nanotoxicology, 2015, 9, 769-779.	3.0	45
52	Development of high throughput, high precision synthesis platforms and characterization methodologies for toxicological studies of nanocellulose. Cellulose, 2018, 25, 2303-2319.	4.9	45
53	Silica coating influences the corona and biokinetics of cerium oxide nanoparticles. Particle and Fibre Toxicology, 2015, 12, 31.	6.2	44
54	Effects of ingested nanocellulose on intestinal microbiota and homeostasis in Wistar Han rats. NanoImpact, 2020, 18, 100216.	4.5	44

#	Article	IF	CITATIONS
55	Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2018, 410, 6155-6164.	3.7	43
56	Inactivation of common hospital acquired pathogens on surfaces and in air utilizing engineered water nanostructures (EWNS) based nano-sanitizers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 234-242.	3.3	42
57	Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: A case study of toxicological implications from nanomaterials released during consumer use. NanoImpact, 2016, 1, 1-8.	4.5	41
58	An integrated methodology for the assessment of environmental health implications during thermal decomposition of nano-enabled products. Environmental Science: Nano, 2015, 2, 262-272.	4.3	39
59	Development and Laboratory Performance Evaluation of a Personal Cascade Impactor. Journal of the Air and Waste Management Association, 2002, 52, 1230-1237.	1.9	38
60	Linking Exposures of Particles Released From Nano-Enabled Products to Toxicology: An Integrated Methodology for Particle Sampling, Extraction, Dispersion, and Dosing. Toxicological Sciences, 2015, 146, 321-333.	3.1	38
61	Development and characterization of electronic-cigarette exposure generation system (Ecig-EGS) for the physico-chemical and toxicological assessment of electronic cigarette emissions. Inhalation Toxicology, 2016, 28, 658-669.	1.6	37
62	A nano-carrier platform for the targeted delivery of nature-inspired antimicrobials using Engineered Water Nanostructures for food safety applications. Food Control, 2019, 96, 365-374.	5.5	37
63	Occupational Inhalation Exposures to Nanoparticles at Six Singapore Printing Centers. Environmental Science & Technology, 2020, 54, 2389-2400.	10.0	36
64	Development of reference metal and metal oxide engineered nanomaterials for nanotoxicology research using high throughput and precision flame spray synthesis approaches. NanoImpact, 2018, 10, 26-37.	4.5	35
65	Enhancing Agrichemical Delivery and Plant Development with Biopolymer-Based Stimuli Responsive Core–Shell Nanostructures. ACS Nano, 2022, 16, 6034-6048.	14.6	35
66	Effects of engineered nanomaterial exposure on macrophage innate immune function. NanoImpact, 2016, 2, 70-81.	4.5	34
67	An integrated electrolysis – electrospray – ionization antimicrobial platform using Engineered Water Nanostructures (EWNS) for food safety applications. Food Control, 2018, 85, 151-160.	5.5	34
68	Enzyme- and Relative Humidity-Responsive Antimicrobial Fibers for Active Food Packaging. ACS Applied Materials & Interfaces, 2021, 13, 50298-50308.	8.0	33
69	Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation. Nanotoxicology, 2016, 10, 720-727.	3.0	32
70	Lipid and protein corona of food-grade TiO2 nanoparticles in simulated gastrointestinal digestion. NanoImpact, 2020, 20, 100272.	4.5	32
71	End-of-life thermal decomposition of nano-enabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environmental Science: Nano, 2016, 3, 1293-1305.	4.3	31
72	Safeguarding human and planetary health demands a fertilizer sector transformation. Plants People Planet, 2020, 2, 302-309.	3.3	31

#	Article	IF	CITATIONS
73	Toxicity, uptake, and nuclear translocation of ingested micro-nanoplastics in an in vitro model of the small intestinal epithelium. Food and Chemical Toxicology, 2021, 158, 112609.	3.6	31
74	A novel method for bacterial inactivation using electrosprayed water nanostructures. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	30
75	Mycobacteria inactivation using Engineered Water Nanostructures (EWNS). Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1175-1183.	3.3	30
76	Toxicological Assessment of CoO and La ₂ O ₃ Metal Oxide Nanoparticles in Human Small Airway Epithelial Cells. Toxicological Sciences, 2016, 150, 418-428.	3.1	30
77	Evaluation of the cytotoxic and cellular proteome impacts of food-grade TiO2 (E171) using simulated gastrointestinal digestions and a tri-culture small intestinal epithelial model. NanoImpact, 2020, 17, 100202.	4.5	30
78	Development of a High-Volume Concentrated Ambient Particles System (CAPS) for Human and Animal Inhalation Toxicological Studies. Inhalation Toxicology, 2003, 15, 111-129.	1.6	29
79	<i>In Vitro</i> Toxicity and Epigenotoxicity of Different Types of Ambient Particulate Matter. Toxicological Sciences, 2015, 148, 473-487.	3.1	29
80	Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions. Nanotoxicology, 2017, 11, 1087-1101.	3.0	29
81	Co-exposure to the food additives SiO ₂ (E551) or TiO ₂ (E171) and the pesticide boscalid increases cytotoxicity and bioavailability of the pesticide in a tri-culture small intestinal epithelium model: potential health implications. Environmental Science: Nano, 2019, 6, 2786-2800.	4.3	29
82	Development and Evaluation of an Impactor for a PM _{2.5} Speciation Sampler. Journal of the Air and Waste Management Association, 2001, 51, 514-523.	1.9	27
83	Aerosol transmission of SARSâ€CoVâ€2 by children and adults during the COVIDâ€19 pandemic. Pediatric Pulmonology, 2021, 56, 1389-1394.	2.0	27
84	Nanofiller Presence Enhances Polycyclic Aromatic Hydrocarbon (PAH) Profile on Nanoparticles Released during Thermal Decomposition of Nano-enabled Thermoplastics: Potential Environmental Health Implications. Environmental Science & Technology, 2017, 51, 5222-5232.	10.0	26
85	Synergistic effects of engineered nanoparticles and organics released from laser printers using nano-enabled toners: potential health implications from exposures to the emitted organic aerosol. Environmental Science: Nano, 2017, 4, 2144-2156.	4.3	26
86	Evaluation of tumorigenic potential of CeO2 and Fe2O3 engineered nanoparticles by a human cell in vitro screening model. NanoImpact, 2017, 6, 39-54.	4.5	25
87	Comprehensive Assessment of Short-Lived ROS and H ₂ O ₂ in Laser Printer Emissions: Assessing the Relative Contribution of Metal Oxides and Organic Constituents. Environmental Science & Technology, 2019, 53, 7574-7583.	10.0	25
88	Dispersion preparation, characterization, and dosimetric analysis of cellulose nano-fibrils and nano-crystals: Implications for cellular toxicological studies. NanoImpact, 2019, 15, 100171.	4.5	25
89	Toxicological implications of released particulate matter during thermal decomposition of nano-enabled thermoplastics. NanoImpact, 2017, 5, 29-40.	4.5	24
90	Effects of ingested food-grade titanium dioxide, silicon dioxide, iron (III) oxide and zinc oxide nanoparticles on an in vitro model of intestinal epithelium: Comparison between monoculture vs. a mucus-secreting coculture model. NanoImpact, 2020, 17, 100209.	4.5	24

#	Article	IF	CITATIONS
91	Development and Evaluation of a High Loading PM2.5Speciation Sampler. Aerosol Science and Technology, 2004, 38, 111-119.	3.1	21
92	Small-Intestine-Specific Delivery of Antidiabetic Extracts from <i>Withania coagulans</i> Using Polysaccharide-Based Enteric-Coated Nanoparticles. ACS Omega, 2019, 4, 12049-12057.	3.5	21
93	Development & amp; characterization of fluorescently tagged nanocellulose for nanotoxicological studies. Environmental Science: Nano, 2019, 6, 1516-1526.	4.3	21
94	Screening for oxidative damage by engineered nanomaterials: a comparative evaluation of FRAS and DCFH. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	20
95	Integrated Transcriptomics, Metabolomics, and Lipidomics Profiling in Rat Lung, Blood, and Serum for Assessment of Laser Printer-Emitted Nanoparticle Inhalation Exposure-Induced Disease Risks. International Journal of Molecular Sciences, 2019, 20, 6348.	4.1	20
96	Synthesis and Physicochemical Transformations of Sizeâ€Sorted Graphene Oxide during Simulated Digestion and Its Toxicological Assessment against an In Vitro Model of the Human Intestinal Epithelium. Small, 2020, 16, e1907640.	10.0	20
97	Effects of Physicochemical Properties of Ultrafine Particles on the Performance of an Ultrafine Particle Concentrator. Aerosol Science and Technology, 2004, 38, 37-45.	3.1	19
98	Thermal decomposition/incineration of nano-enabled coatings and effects of nanofiller/matrix properties and operational conditions on byproduct release dynamics: Potential environmental health implications. NanoImpact, 2019, 13, 44-55.	4.5	19
99	Physicochemical and Morphological Transformations of Chitosan Nanoparticles across the Gastrointestinal Tract and Cellular Toxicity in an In Vitro Model of the Small Intestinal Epithelium. Journal of Agricultural and Food Chemistry, 2020, 68, 358-368.	5.2	19
100	Inhalation of printer-emitted particles impairs cardiac conduction, hemodynamics, and autonomic regulation and induces arrhythmia and electrical remodeling in rats. Particle and Fibre Toxicology, 2020, 17, 7.	6.2	19
101	Scatter Enhanced Phase Contrast Microscopy for Discriminating Mechanisms of Active Nanoparticle Transport in Living Cells. Nano Letters, 2019, 19, 793-804.	9.1	17
102	Release of particulate matter from nano-enabled building materials (NEBMs) across their lifecycle: Potential occupational health and safety implications. Journal of Hazardous Materials, 2022, 422, 126771.	12.4	17
103	Inflammation Increases Susceptibility of Human Small Airway Epithelial Cells to Pneumonic Nanotoxicity. Small, 2020, 16, 2000963.	10.0	15
104	Direct stimulation of human fibroblasts by nCeO2 in vitro is attenuated with an amorphous silica coating. Particle and Fibre Toxicology, 2015, 13, 23.	6.2	14
105	Indoor Air Quality in Photocopy Centers, Nanoparticle Exposures at Photocopy Workstations, and the Need for Exposure Controls. Annals of Occupational Hygiene, 2017, 61, 110-122.	1.9	14
106	High-Throughput Screening Platform for Nanoparticle-Mediated Alterations of DNA Repair Capacity. ACS Nano, 2021, 15, 4728-4746.	14.6	14
107	Inactivation of Hand Hygiene-Related Pathogens Using Engineered Water Nanostructures. ACS Sustainable Chemistry and Engineering, 2019, 7, 19761-19769.	6.7	13
108	Fluorescently Labeled Cellulose Nanofibers for Environmental Health and Safety Studies. Nanomaterials, 2021, 11, 1015.	4.1	13

#	Article	lF	CITATIONS
109	Development of high throughput, high precision synthesis platforms and characterization methodologies for toxicological studies of nanocellulose. Cellulose, 2018, 25, 2303-2319.	4.9	13
110	Co-exposure to boscalid and TiO2 (E171) or SiO2 (E551) downregulates cell junction gene expression in small intestinal epithelium cellular model and increases pesticide translocation. NanoImpact, 2021, 22, 100306.	4.5	12
111	E-cigarette vaping associated acute lung injury (EVALI): state of science and future research needs. Critical Reviews in Toxicology, 2022, 52, 188-220.	3.9	12
112	Mapping 2D- and 3D-distributions of metal/metal oxide nanoparticles within cleared human ex vivo skin tissues. NanoImpact, 2020, 17, 100208.	4.5	11
113	Biological Impacts of Reduced Graphene Oxide Affected by Protein Corona Formation. Chemical Research in Toxicology, 2022, 35, 1244-1256.	3.3	11
114	Iron Oxide Nanoparticle-Induced Neoplastic-Like Cell Transformation <i>in Vitro</i> Is Reduced with a Protective Amorphous Silica Coating. Chemical Research in Toxicology, 2019, 32, 2382-2397.	3.3	10
115	Cytotoxicity and cellular proteome impact of cellulose nanocrystals using simulated digestion and an in vitro small intestinal epithelium cellular model. NanoImpact, 2020, 20, 100269.	4.5	10
116	A novel antimicrobial technology to enhance food safety and quality of leafy vegetables using engineered water nanostructures. Environmental Science: Nano, 2021, 8, 514-526.	4.3	10
117	Chronic upper airway and systemic inflammation from copier emitted particles in healthy operators at six Singaporean workplaces. NanoImpact, 2021, 22, 100325.	4.5	10
118	Fate, cytotoxicity and cellular metabolomic impact of ingested nanoscale carbon dots using simulated digestion and a triculture small intestinal epithelial model. NanoImpact, 2021, 23, 100349.	4.5	10
119	Biotransformations and cytotoxicity of graphene and inorganic two-dimensional nanomaterials using simulated digestions coupled with a triculture <i>in vitro</i> model of the human gastrointestinal epithelium. Environmental Science: Nano, 2021, 8, 3233-3249.	4.3	10
120	Silica encapsulation of ZnO nanoparticles reduces their toxicity for cumulus cell-oocyte-complex expansion. Particle and Fibre Toxicology, 2021, 18, 33.	6.2	9
121	Sustainable Nutrient Substrates for Enhanced Seedling Development in Hydroponics. ACS Sustainable Chemistry and Engineering, 2022, 10, 8506-8516.	6.7	9
122	Pilot deep RNA sequencing of worker blood samples from Singapore printing industry for occupational risk assessment. NanoImpact, 2020, 19, 100248.	4.5	8
123	Human brain microvascular endothelial cell pairs model tissue-level blood–brain barrier function. Integrative Biology (United Kingdom), 2020, 12, 64-79.	1.3	8
124	New Multiscale Characterization Methodology for Effective Determination of Isolation–Structure–Function Relationship of Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 2021, 9, 669537.	4.1	7
125	Transcorneal delivery of topically applied silver nanoparticles does not delay epithelial wound healing. NanoImpact, 2021, 24, 100352.	4.5	7
126	Oxidized carbon black nanoparticles induce endothelial damage through C-X-C chemokine receptor 3-mediated pathway. Redox Biology, 2021, 47, 102161.	9.0	7

#	Article	IF	CITATIONS
127	Quaternized chitosan as a biopolymer sanitizer for leafy vegetables: synthesis, characteristics, and traditional vs. dry nano-aerosol applications. Food Chemistry, 2022, 378, 132056.	8.2	7
128	Elevated Urinary Biomarkers of Oxidative Damage in Photocopier Operators following Acute and Chronic Exposures. Nanomaterials, 2022, 12, 715.	4.1	7
129	Effects of ingested nanocellulose and nanochitosan materials on carbohydrate digestion and absorption in an <i>in vitro</i> small intestinal epithelium model. Environmental Science: Nano, 2021, 8, 2554-2568.	4.3	6
130	Printer center nanoparticles alter the DNA repair capacity of human bronchial airway epithelial cells. NanoImpact, 2022, 25, 100379.	4.5	6
131	Association of nanoparticle exposure with serum metabolic disorders of healthy adults in printing centers. Journal of Hazardous Materials, 2022, 432, 128710.	12.4	6
132	Predictors of indoor radon levels in the Midwest United States. Journal of the Air and Waste Management Association, 2021, 71, 1515-1528.	1.9	4
133	Capture, isolation and electrochemical detection of industrially-relevant engineered aerosol nanoparticles using poly (amic) acid, phase-inverted, nano-membranes. Journal of Hazardous Materials, 2014, 279, 365-374.	12.4	3
134	Differential modulation of endothelial cytoplasmic protrusions after exposure to graphene-family nanomaterials. NanoImpact, 2022, 26, 100401.	4.5	3
135	E-Cigarette (E-Cig) Liquid Composition and Operational Voltage Define the <i>In Vitro</i> Toxicity of Δ8Tetrahydrocannabinol/Vitamin E Acetate (Δ8THC/VEA) E-Cig Aerosols. Toxicological Sciences, 2022, 187, 279-297.	3.1	3
136	A high-throughput method to characterize the gut bacteria growth upon engineered nanomaterial treatment. Environmental Science: Nano, 2020, 7, 3155-3166.	4.3	2
137	Effects of ingested nanomaterials on tissue distribution of co-ingested zinc and iron in normal and zinc-deficient mice. NanoImpact, 2021, 21, 100279.	4.5	2
138	Inactivating SARS-CoV-2 Surrogates on Surfaces Using Engineered Water Nanostructures Incorporated with Nature Derived Antimicrobials. Nanomaterials, 2022, 12, 1735.	4.1	2
139	Using engineered water nanostructures (EWNS) for wound disinfection: Case study of Acinetobacter baumannii inactivation on skin and the inhibition of biofilm formation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102537.	3.3	1